File: lfmcovarproxy.cpp

package info (click to toggle)
quantlib 1.4-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 34,340 kB
  • ctags: 64,765
  • sloc: cpp: 291,654; ansic: 21,484; sh: 11,209; makefile: 4,923; lisp: 86
file content (140 lines) | stat: -rw-r--r-- 4,638 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2005, 2006 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/legacy/libormarketmodels/lfmcovarproxy.hpp>
#include <ql/math/integrals/kronrodintegral.hpp>

namespace QuantLib {
    LfmCovarianceProxy::LfmCovarianceProxy(
        const boost::shared_ptr<LmVolatilityModel>& volaModel,
        const boost::shared_ptr<LmCorrelationModel>& corrModel)

    : LfmCovarianceParameterization(corrModel->size(), corrModel->factors()),
      volaModel_(volaModel),
      corrModel_(corrModel) {

        QL_REQUIRE(volaModel_->size() == corrModel_->size(),
            "different size for the volatility (" << volaModel_->size() <<
            ") and correlation (" << corrModel_->size() <<
            ") models");
    }

    boost::shared_ptr<LmVolatilityModel>
    LfmCovarianceProxy::volatilityModel() const {
        return volaModel_;
    }

    boost::shared_ptr<LmCorrelationModel>
    LfmCovarianceProxy::correlationModel() const {
        return corrModel_;
    }

    Disposable<Matrix> LfmCovarianceProxy::diffusion(Time t,
                                                     const Array& x) const {

        Matrix pca = corrModel_->pseudoSqrt(t, x);
        Array  vol = volaModel_->volatility(t, x);
        for (Size i=0; i<size_; ++i) {
            std::transform(pca.row_begin(i), pca.row_end(i),
                           pca.row_begin(i),
                           std::bind2nd(std::multiplies<Real>(), vol[i]));
        }

        return pca;
    }

    Disposable<Matrix> LfmCovarianceProxy::covariance(Time t,
                                                      const Array& x) const {

        Array  volatility  = volaModel_->volatility(t, x);
        Matrix correlation = corrModel_->correlation(t, x);

        Matrix tmp(size_, size_);
        for (Size i=0; i<size_; ++i) {
            for (Size j=0; j<size_; ++j) {
                tmp[i][j] = volatility[i]*correlation[i][j]*volatility[j];
            }
        }

        return tmp;
    }

    class LfmCovarianceProxy::Var_Helper {
      public:
        Var_Helper(const LfmCovarianceProxy* proxy, Size i, Size j);

        Real operator()(Real t) const;
      private:
        const Size i_, j_;
        const LmVolatilityModel*  const volaModel_;
        const LmCorrelationModel* const corrModel_;
    };

    LfmCovarianceProxy::Var_Helper::Var_Helper(const LfmCovarianceProxy* proxy,
                                               Size i, Size j)
    : i_(i),
      j_(j),
      volaModel_(proxy->volaModel_.get()),
      corrModel_(proxy->corrModel_.get()) {
    }

    Real LfmCovarianceProxy::Var_Helper::operator()(Real t) const {
        Volatility v1, v2;

        if (i_ == j_) {
            v1 = v2 = volaModel_->volatility(i_, t);
        } else {
            v1 = volaModel_->volatility(i_, t);
            v2 = volaModel_->volatility(j_, t);
        }

        return  v1 * corrModel_->correlation(i_, j_, t) * v2;
    }

    Real LfmCovarianceProxy::integratedCovariance(
                               Size i, Size j, Time t, const Array& x) const {

        if (corrModel_->isTimeIndependent()) {
            try {
                // if all objects support these methods
                // thats by far the fastest way to get the
                // integrated covariance
                return corrModel_->correlation(i, j, 0.0, x)
                        * volaModel_->integratedVariance(j, i, t, x);
            }
            catch (Error&) {
                // okay proceed with the
                // slow numerical integration routine
            }
        }

        QL_REQUIRE(x.empty(), "can not handle given x here");

        Real tmp=0.0;
        Var_Helper helper(this, i, j);

        GaussKronrodAdaptive integrator(1e-10, 10000);
        for (Size k=0; k<64; ++k) {
            tmp+=integrator(helper, k*t/64., (k+1)*t/64.);
        }
        return tmp;
    }

}