1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005, 2006 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/legacy/libormarketmodels/lfmprocess.hpp>
#include <ql/time/schedule.hpp>
#include <ql/math/functional.hpp>
#include <ql/cashflows/cashflowvectors.hpp>
#include <ql/cashflows/floatingratecoupon.hpp>
#include <ql/processes/eulerdiscretization.hpp>
#include <ql/cashflows/cashflows.hpp>
#include <ql/cashflows/couponpricer.hpp>
#include <ql/cashflows/iborcoupon.hpp>
#include <ql/termstructures/yieldtermstructure.hpp>
namespace QuantLib {
LiborForwardModelProcess::LiborForwardModelProcess(
Size size,
const boost::shared_ptr<IborIndex>& index)
: StochasticProcess(boost::shared_ptr<discretization>(
new EulerDiscretization)),
size_ (size),
index_ (index),
initialValues_ (size_),
fixingTimes_ (size_),
fixingDates_ (size_),
accrualStartTimes_(size),
accrualEndTimes_ (size),
accrualPeriod_ (size_),
m1(size_), m2(size_) {
const DayCounter dayCounter = index_->dayCounter();
const Leg flows = cashFlows();
QL_REQUIRE(size_ == flows.size(), "wrong number of cashflows");
Date settlement = index_->forwardingTermStructure()->referenceDate();
const Date startDate =
boost::dynamic_pointer_cast<IborCoupon>(flows[0])->fixingDate();
for (Size i = 0; i < size_; ++i) {
const boost::shared_ptr<IborCoupon> coupon =
boost::dynamic_pointer_cast<IborCoupon>(flows[i]);
QL_REQUIRE(coupon->date() == coupon->accrualEndDate(),
"irregular coupon types are not suppported");
initialValues_[i] = coupon->rate();
accrualPeriod_[i] = coupon->accrualPeriod();
fixingDates_[i] = coupon->fixingDate();
fixingTimes_[i] =
dayCounter.yearFraction(startDate, coupon->fixingDate());
accrualStartTimes_[i] =
dayCounter.yearFraction(settlement,coupon->accrualStartDate());
accrualEndTimes_[i] =
dayCounter.yearFraction(settlement,coupon->accrualEndDate());
}
}
Disposable<Array> LiborForwardModelProcess::drift(Time t,
const Array& x) const {
Array f(size_, 0.0);
Matrix covariance(lfmParam_->covariance(t, x));
const Size m = nextIndexReset(t);
for (Size k=m; k<size_; ++k) {
m1[k] = accrualPeriod_[k]*x[k]/(1+accrualPeriod_[k]*x[k]);
f[k] = std::inner_product(m1.begin()+m, m1.begin()+k+1,
covariance.column_begin(k)+m,0.0)
- 0.5*covariance[k][k];
}
return f;
}
Disposable<Matrix>
LiborForwardModelProcess::diffusion(Time t, const Array& x) const {
return lfmParam_->diffusion(t, x);
}
Disposable<Matrix> LiborForwardModelProcess::covariance(
Time t, const Array& x, Time dt) const {
return lfmParam_->covariance(t, x)*dt;
}
Disposable<Array> LiborForwardModelProcess::apply(
const Array& x0, const Array& dx) const {
Array tmp(size_);
for (Size k=0; k<size_; ++k) {
tmp[k] = x0[k] * std::exp(dx[k]);
}
return tmp;
}
Disposable<Array> LiborForwardModelProcess::evolve(
Time t0, const Array& x0,
Time dt, const Array& dw) const {
/* predictor-corrector step to reduce discretization errors.
Short - but slow - solution would be
Array rnd_0 = stdDeviation(t0, x0, dt)*dw;
Array drift_0 = discretization_->drift(*this, t0, x0, dt);
return apply(x0, ( drift_0 + discretization_
->drift(*this,t0,apply(x0, drift_0 + rnd_0),dt) )*0.5 + rnd_0);
The following implementation does the same but is faster.
*/
const Size m = nextIndexReset(t0);
const Real sdt = std::sqrt(dt);
Array f(x0);
Matrix diff = lfmParam_->diffusion(t0, x0);
Matrix covariance = lfmParam_->covariance(t0, x0);
for (Size k=m; k<size_; ++k) {
const Real y = accrualPeriod_[k]*x0[k];
m1[k] = y/(1+y);
const Real d = (
std::inner_product(m1.begin()+m, m1.begin()+k+1,
covariance.column_begin(k)+m,0.0)
-0.5*covariance[k][k]) * dt;
const Real r = std::inner_product(
diff.row_begin(k), diff.row_end(k), dw.begin(), 0.0)*sdt;
const Real x = y*std::exp(d + r);
m2[k] = x/(1+x);
f[k] = x0[k] * std::exp(0.5*(d+
(std::inner_product(m2.begin()+m, m2.begin()+k+1,
covariance.column_begin(k)+m,0.0)
-0.5*covariance[k][k])*dt)+ r);
}
return f;
}
Disposable<Array> LiborForwardModelProcess::initialValues() const {
Array tmp = initialValues_;
return tmp;
}
void LiborForwardModelProcess::setCovarParam(
const boost::shared_ptr<LfmCovarianceParameterization> & param) {
lfmParam_ = param;
}
boost::shared_ptr<LfmCovarianceParameterization>
LiborForwardModelProcess::covarParam() const {
return lfmParam_;
}
boost::shared_ptr<IborIndex>
LiborForwardModelProcess::index() const {
return index_;
}
Leg
LiborForwardModelProcess::cashFlows(Real amount) const {
Date refDate = index_->forwardingTermStructure()->referenceDate();
Schedule schedule(refDate,
refDate + Period(index_->tenor().length()*size_,
index_->tenor().units()),
index_->tenor(), index_->fixingCalendar(),
index_->businessDayConvention(),
index_->businessDayConvention(),
DateGeneration::Forward, false);
return IborLeg(schedule,index_)
.withNotionals(amount)
.withPaymentDayCounter(index_->dayCounter())
.withPaymentAdjustment(index_->businessDayConvention())
.withFixingDays(index_->fixingDays());
}
Size LiborForwardModelProcess::size() const {
return size_;
}
Size LiborForwardModelProcess::factors() const {
return lfmParam_->factors();
}
const std::vector<Time> & LiborForwardModelProcess::fixingTimes() const {
return fixingTimes_;
}
const std::vector<Date> & LiborForwardModelProcess::fixingDates() const {
return fixingDates_;
}
const std::vector<Time> &
LiborForwardModelProcess::accrualStartTimes() const {
return accrualStartTimes_;
}
const std::vector<Time> &
LiborForwardModelProcess::accrualEndTimes() const {
return accrualEndTimes_;
}
Size LiborForwardModelProcess::nextIndexReset(Time t) const {
return std::upper_bound(fixingTimes_.begin(), fixingTimes_.end(), t)
- fixingTimes_.begin();
}
std::vector<DiscountFactor> LiborForwardModelProcess::discountBond(
const std::vector<Rate> & rates) const {
std::vector<DiscountFactor> discountFactors(size_);
discountFactors[0] = 1.0/(1.0 + rates[0]*accrualPeriod_[0]);
for (Size i = 1; i < size_; ++i) {
discountFactors[i] =
discountFactors[i-1]/(1.0 + rates[i]*accrualPeriod_[i]);
}
return discountFactors;
}
}
|