File: gausslobattointegral.cpp

package info (click to toggle)
quantlib 1.4-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 34,340 kB
  • ctags: 64,765
  • sloc: cpp: 291,654; ansic: 21,484; sh: 11,209; makefile: 4,923; lisp: 86
file content (144 lines) | stat: -rw-r--r-- 5,707 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file gausslabottointegral.cpp
    \brief integral of a one-dimensional function using the adaptive 
    Gauss-Lobatto integral
*/

#include <ql/math/integrals/gausslobattointegral.hpp>

namespace QuantLib {

    const Real GaussLobattoIntegral::alpha_ = std::sqrt(2.0/3.0); 
    const Real GaussLobattoIntegral::beta_  = 1.0/std::sqrt(5.0);
    const Real GaussLobattoIntegral::x1_    = 0.94288241569547971906; 
    const Real GaussLobattoIntegral::x2_    = 0.64185334234578130578;
    const Real GaussLobattoIntegral::x3_    = 0.23638319966214988028;

    GaussLobattoIntegral::GaussLobattoIntegral(Size maxIterations,
                                               Real absAccuracy,
                                               Real relAccuracy,
                                               bool useConvergenceEstimate)
    : Integrator(absAccuracy, maxIterations),
      relAccuracy_(relAccuracy),
      useConvergenceEstimate_(useConvergenceEstimate) {
    }

    Real GaussLobattoIntegral::integrate(
                                     const boost::function<Real (Real)>& f, 
                                     Real a, Real b) const {

        setNumberOfEvaluations(0);
        const Real calcAbsTolerance = calculateAbsTolerance(f, a, b);

        increaseNumberOfEvaluations(2);
        return adaptivGaussLobattoStep(f, a, b, f(a), f(b), calcAbsTolerance);
    }

    Real GaussLobattoIntegral::calculateAbsTolerance(
                                     const boost::function<Real (Real)>& f, 
                                     Real a, Real b) const {
        

        Real relTol = std::max(relAccuracy_, QL_EPSILON);
        
        const Real m = (a+b)/2; 
        const Real h = (b-a)/2;
        const Real y1 = f(a);
        const Real y3 = f(m-alpha_*h);
        const Real y5 = f(m-beta_*h);
        const Real y7 = f(m);
        const Real y9 = f(m+beta_*h);
        const Real y11= f(m+alpha_*h);
        const Real y13= f(b);

        Real acc=h*(0.0158271919734801831*(y1+y13)
                  +0.0942738402188500455*(f(m-x1_*h)+f(m+x1_*h))
                  +0.1550719873365853963*(y3+y11)
                  +0.1888215739601824544*(f(m-x2_*h)+ f(m+x2_*h))
                  +0.1997734052268585268*(y5+y9) 
                  +0.2249264653333395270*(f(m-x3_*h)+f(m+x3_*h))
                  +0.2426110719014077338*y7);  
        
        increaseNumberOfEvaluations(13);
        QL_REQUIRE(acc != 0.0, "can not calculate absolute accuracy from "
                               "relative accuracy");

        Real r = 1.0;
        if (useConvergenceEstimate_) {
            const Real integral2 = (h/6)*(y1+y13+5*(y5+y9));
            const Real integral1 = (h/1470)*(77*(y1+y13)+432*(y3+y11)+
                                             625*(y5+y9)+672*y7);
        
            if (std::fabs(integral2-acc) != 0.0) 
                r = std::fabs(integral1-acc)/std::fabs(integral2-acc);
            if (r == 0.0 || r > 1.0)
                r = 1.0;
        }

        if (relAccuracy_ != Null<Real>())
            return std::min(absoluteAccuracy(), acc*relTol)/(r*QL_EPSILON);
        else {
            return absoluteAccuracy()/(r*QL_EPSILON);
        }
    }
    
    Real GaussLobattoIntegral::adaptivGaussLobattoStep(
                                     const boost::function<Real (Real)>& f,
                                     Real a, Real b, Real fa, Real fb,
                                     Real acc) const {
        QL_REQUIRE(numberOfEvaluations() < maxEvaluations(),
                   "max number of iterations reached");
        
        const Real h=(b-a)/2; 
        const Real m=(a+b)/2;
        
        const Real mll=m-alpha_*h; 
        const Real ml =m-beta_*h; 
        const Real mr =m+beta_*h; 
        const Real mrr=m+alpha_*h;
        
        const Real fmll= f(mll);
        const Real fml = f(ml);
        const Real fm  = f(m);
        const Real fmr = f(mr);
        const Real fmrr= f(mrr);
        increaseNumberOfEvaluations(5);
        
        const Real integral2=(h/6)*(fa+fb+5*(fml+fmr));
        const Real integral1=(h/1470)*(77*(fa+fb)
                                       +432*(fmll+fmrr)+625*(fml+fmr)+672*fm);
        
        // avoid 80 bit logic on x86 cpu
        volatile Real dist = acc + (integral1-integral2);
        if(dist==acc || mll<=a || b<=mrr) {
            QL_REQUIRE(m>a && b>m,"Interval contains no more machine number");
            return integral1;
        }
        else {
            return  adaptivGaussLobattoStep(f,a,mll,fa,fmll,acc)  
                  + adaptivGaussLobattoStep(f,mll,ml,fmll,fml,acc)
                  + adaptivGaussLobattoStep(f,ml,m,fml,fm,acc)
                  + adaptivGaussLobattoStep(f,m,mr,fm,fmr,acc)
                  + adaptivGaussLobattoStep(f,mr,mrr,fmr,fmrr,acc)
                  + adaptivGaussLobattoStep(f,mrr,b,fmrr,fb,acc);
        }
    }
}