1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007, 2008 Mark Joshi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/matrixutilities/basisincompleteordered.hpp>
#include <algorithm>
namespace QuantLib {
BasisIncompleteOrdered::BasisIncompleteOrdered(Size euclideanDimension)
: euclideanDimension_(euclideanDimension) {}
bool BasisIncompleteOrdered::addVector(const Array& newVector1) {
QL_REQUIRE(newVector1.size() == euclideanDimension_,
"missized vector passed to "
"BasisIncompleteOrdered::addVector");
newVector_ = newVector1;
if (currentBasis_.size()==euclideanDimension_)
return false;
for (Size j=0; j<currentBasis_.size(); ++j) {
Real innerProd = std::inner_product(newVector_.begin(),
newVector_.end(),
currentBasis_[j].begin(), 0.0);
for (Size k=0; k<euclideanDimension_; ++k)
newVector_[k] -=innerProd*currentBasis_[j][k];
}
Real norm = std::sqrt(std::inner_product(newVector_.begin(),
newVector_.end(),
newVector_.begin(), 0.0));
if (norm<1e-12) // maybe this should be a tolerance
return false;
for (Size l=0; l<euclideanDimension_; ++l)
newVector_[l]/=norm;
currentBasis_.push_back(newVector_);
return true;
}
Size BasisIncompleteOrdered::basisSize() const {
return currentBasis_.size();
}
Size BasisIncompleteOrdered::euclideanDimension() const {
return euclideanDimension_;
}
Matrix BasisIncompleteOrdered::getBasisAsRowsInMatrix() const {
Matrix basis(currentBasis_.size(), euclideanDimension_);
for (Size i=0; i<basis.rows(); ++i)
for (Size j=0; j<basis.columns(); ++j)
basis[i][j] = currentBasis_[i][j];
return basis;
}
namespace
{
Real normSquared(const Matrix& v, Size row)
{
Real x=0.0;
for (Size i=0; i < v.columns(); ++i)
x += v[row][i]*v[row][i];
return x;
}
Real norm(const Matrix& v, Size row)
{
return std::sqrt(normSquared( v, row));
}
Real innerProduct(const Matrix& v, Size row1, const Matrix& w, Size row2)
{
Real x=0.0;
for (Size i=0; i < v.columns(); ++i)
x += v[row1][i]*w[row2][i];
return x;
}
}
OrthogonalProjections::OrthogonalProjections(const Matrix& originalVectors,
Real multiplierCutoff,
Real tolerance)
: originalVectors_(originalVectors),
multiplierCutoff_(multiplierCutoff),
numberVectors_(originalVectors.rows()),
dimension_(originalVectors.columns()),
validVectors_(true,originalVectors.rows()), // opposite way round from vector constructor
orthoNormalizedVectors_(originalVectors.rows(),
originalVectors.columns())
{
std::vector<Real> currentVector(dimension_);
for (Size j=0; j < numberVectors_; ++j)
{
if (validVectors_[j])
{
for (Size k=0; k< numberVectors_; ++k) // create an orthormal basis not containing j
{
for (Size m=0; m < dimension_; ++m)
orthoNormalizedVectors_[k][m] = originalVectors_[k][m];
if ( k !=j && validVectors_[k])
{
for (Size l=0; l < k; ++l)
{
if (validVectors_[l] && l !=j)
{
Real dotProduct = innerProduct(orthoNormalizedVectors_, k, orthoNormalizedVectors_,l);
for (Size n=0; n < dimension_; ++n)
orthoNormalizedVectors_[k][n] -= dotProduct*orthoNormalizedVectors_[l][n];
}
}
Real normBeforeScaling= norm(orthoNormalizedVectors_,k);
if (normBeforeScaling < tolerance)
{
validVectors_[k] = false;
}
else
{
Real normBeforeScalingRecip = 1.0/normBeforeScaling;
for (Size m=0; m < dimension_; ++m)
orthoNormalizedVectors_[k][m] *= normBeforeScalingRecip;
} // end of else (norm < tolerance)
} // end of if k !=j && validVectors_[k])
}// end of for (Size k=0; k< numberVectors_; ++k)
// we now have an o.n. basis for everything except j
Real prevNormSquared = normSquared(originalVectors_, j);
for (Size r=0; r < numberVectors_; ++r)
if (validVectors_[r] && r != j)
{
Real dotProduct = innerProduct(orthoNormalizedVectors_, j, orthoNormalizedVectors_,r);
for (Size s=0; s < dimension_; ++s)
orthoNormalizedVectors_[j][s] -= dotProduct*orthoNormalizedVectors_[r][s];
}
Real projectionOnOriginalDirection = innerProduct(originalVectors_,j,orthoNormalizedVectors_,j);
Real sizeMultiplier = prevNormSquared/projectionOnOriginalDirection;
if (std::fabs(sizeMultiplier) < multiplierCutoff_)
{
for (Size t=0; t < dimension_; ++t)
currentVector[t] = orthoNormalizedVectors_[j][t]*sizeMultiplier;
}
else
validVectors_[j] = false;
} // end of if (validVectors_[j])
projectedVectors_.push_back(currentVector);
} //end of j loop
numberValidVectors_ =0;
for (Size i=0; i < numberVectors_; ++i)
numberValidVectors_ += validVectors_[i] ? 1 : 0;
} // end of constructor
const std::valarray<bool>& OrthogonalProjections::validVectors() const
{
return validVectors_;
}
const std::vector<Real>& OrthogonalProjections::GetVector(Size index) const
{
return projectedVectors_[index];
}
Size OrthogonalProjections::numberValidVectors() const
{
return numberValidVectors_;
}
}
|