File: basisincompleteordered.cpp

package info (click to toggle)
quantlib 1.4-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 34,340 kB
  • ctags: 64,765
  • sloc: cpp: 291,654; ansic: 21,484; sh: 11,209; makefile: 4,923; lisp: 86
file content (229 lines) | stat: -rw-r--r-- 7,303 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
Copyright (C) 2007, 2008 Mark Joshi

This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/

QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license.  You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/matrixutilities/basisincompleteordered.hpp>
#include <algorithm>

namespace QuantLib {

    BasisIncompleteOrdered::BasisIncompleteOrdered(Size euclideanDimension)
        : euclideanDimension_(euclideanDimension) {}

    bool BasisIncompleteOrdered::addVector(const Array& newVector1) {

        QL_REQUIRE(newVector1.size() == euclideanDimension_,
            "missized vector passed to "
            "BasisIncompleteOrdered::addVector");

        newVector_ = newVector1;

        if (currentBasis_.size()==euclideanDimension_)
            return false;

        for (Size j=0; j<currentBasis_.size(); ++j) {
            Real innerProd = std::inner_product(newVector_.begin(),
                newVector_.end(),
                currentBasis_[j].begin(), 0.0);

            for (Size k=0; k<euclideanDimension_; ++k)
                newVector_[k] -=innerProd*currentBasis_[j][k];
        }

        Real norm = std::sqrt(std::inner_product(newVector_.begin(),
            newVector_.end(),
            newVector_.begin(), 0.0));

        if (norm<1e-12) // maybe this should be a tolerance
            return false;

        for (Size l=0; l<euclideanDimension_; ++l)
            newVector_[l]/=norm;

        currentBasis_.push_back(newVector_);

        return true;
    }

    Size BasisIncompleteOrdered::basisSize() const {
        return currentBasis_.size();
    }

    Size BasisIncompleteOrdered::euclideanDimension() const {
        return euclideanDimension_;
    }


    Matrix BasisIncompleteOrdered::getBasisAsRowsInMatrix() const {
        Matrix basis(currentBasis_.size(), euclideanDimension_);
        for (Size i=0; i<basis.rows(); ++i)
            for (Size j=0; j<basis.columns(); ++j)
                basis[i][j] = currentBasis_[i][j];

        return basis;
    }

    namespace
    {
        Real normSquared(const Matrix& v, Size row)
        {
            Real x=0.0;
            for (Size i=0; i < v.columns(); ++i)
                x += v[row][i]*v[row][i];

            return x;
        }


        Real norm(const Matrix& v, Size row)
        {
            return std::sqrt(normSquared( v,  row));
        }

        Real innerProduct(const Matrix& v, Size row1, const Matrix& w, Size row2)
        {

            Real x=0.0;
            for (Size i=0; i < v.columns(); ++i)
                x += v[row1][i]*w[row2][i];

            return x;
        }

    }



    OrthogonalProjections::OrthogonalProjections(const Matrix& originalVectors,
                                                 Real multiplierCutoff,
                                                 Real tolerance)
    : originalVectors_(originalVectors),
      multiplierCutoff_(multiplierCutoff),
      numberVectors_(originalVectors.rows()),
      dimension_(originalVectors.columns()),
      validVectors_(true,originalVectors.rows()), // opposite way round from vector constructor
      orthoNormalizedVectors_(originalVectors.rows(),
                              originalVectors.columns())
    {
        std::vector<Real> currentVector(dimension_);
        for (Size j=0; j < numberVectors_; ++j)
        {

            if (validVectors_[j])
            {
                for (Size k=0; k< numberVectors_; ++k) // create an orthormal basis not containing j
                {
                    for (Size m=0; m < dimension_; ++m)
                        orthoNormalizedVectors_[k][m] = originalVectors_[k][m];

                    if ( k !=j && validVectors_[k])
                    {


                        for (Size l=0; l < k; ++l)
                        {
                            if (validVectors_[l] && l !=j)
                            {
                                Real dotProduct = innerProduct(orthoNormalizedVectors_, k, orthoNormalizedVectors_,l);
                                for (Size n=0; n < dimension_; ++n)
                                    orthoNormalizedVectors_[k][n] -=  dotProduct*orthoNormalizedVectors_[l][n];
                            }

                        }

                        Real normBeforeScaling= norm(orthoNormalizedVectors_,k);

                        if (normBeforeScaling < tolerance)
                        {
                            validVectors_[k] = false;
                        }
                        else
                        {
                            Real normBeforeScalingRecip = 1.0/normBeforeScaling;
                            for (Size m=0; m < dimension_; ++m)
                                orthoNormalizedVectors_[k][m] *= normBeforeScalingRecip;

                        } // end of else (norm < tolerance)

                    } // end of if k !=j && validVectors_[k])

                }// end of  for (Size k=0; k< numberVectors_; ++k)

                // we now have an o.n. basis for everything except  j

                Real prevNormSquared = normSquared(originalVectors_, j);


                for (Size r=0; r < numberVectors_; ++r)
                    if (validVectors_[r] && r != j)
                    {
                        Real dotProduct = innerProduct(orthoNormalizedVectors_, j, orthoNormalizedVectors_,r);

                        for (Size s=0; s < dimension_; ++s)
                           orthoNormalizedVectors_[j][s] -= dotProduct*orthoNormalizedVectors_[r][s];

                    }

               Real projectionOnOriginalDirection = innerProduct(originalVectors_,j,orthoNormalizedVectors_,j);
               Real sizeMultiplier = prevNormSquared/projectionOnOriginalDirection;

               if (std::fabs(sizeMultiplier) < multiplierCutoff_)
               {
                    for (Size t=0; t < dimension_; ++t)
                        currentVector[t] = orthoNormalizedVectors_[j][t]*sizeMultiplier;

               }
               else
                   validVectors_[j] = false;


            } // end of  if (validVectors_[j])

            projectedVectors_.push_back(currentVector);


        } //end of j loop

        numberValidVectors_ =0;
        for (Size i=0; i < numberVectors_; ++i)
            numberValidVectors_ +=  validVectors_[i] ? 1 : 0;


    } // end of constructor

    const std::valarray<bool>& OrthogonalProjections::validVectors() const
    {
        return validVectors_;

    }

    const std::vector<Real>& OrthogonalProjections::GetVector(Size index) const
    {
        return projectedVectors_[index];
    }


  Size OrthogonalProjections::numberValidVectors() const
  {
        return numberValidVectors_;
  }




}