1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file tqreigendecomposition.hpp
\brief tridiag. QR eigen decompositions with implicit shift
*/
#include <ql/math/matrixutilities/tqreigendecomposition.hpp>
#include <vector>
namespace QuantLib {
TqrEigenDecomposition::TqrEigenDecomposition(const Array& diag,
const Array& sub,
EigenVectorCalculation calc,
ShiftStrategy strategy)
: iter_(0), d_(diag),
ev_((calc == WithEigenVector)? d_.size() :
(calc == WithoutEigenVector)? 0 : 1, d_.size(), 0)
{
Size n = diag.size();
QL_REQUIRE(n == sub.size()+1, "Wrong dimensions");
Array e(n, 0.0);
std::copy(sub.begin(),sub.end(),e.begin()+1);
Size i;
for (i=0; i < ev_.rows(); ++i) {
ev_[i][i] = 1.0;
}
for (Size k=n-1; k >=1; --k) {
while (!offDiagIsZero(k, e)) {
Size l = k;
while (--l > 0 && !offDiagIsZero(l,e));
iter_++;
Real q = d_[l];
if (strategy != NoShift) {
// calculated eigenvalue of 2x2 sub matrix of
// [ d_[k-1] e_[k] ]
// [ e_[k] d_[k] ]
// which is closer to d_[k+1].
// FLOATING_POINT_EXCEPTION
const Real t1 = std::sqrt(
0.25*(d_[k]*d_[k] + d_[k-1]*d_[k-1])
- 0.5*d_[k-1]*d_[k] + e[k]*e[k]);
const Real t2 = 0.5*(d_[k]+d_[k-1]);
const Real lambda =
(std::fabs(t2+t1 - d_[k]) < std::fabs(t2-t1 - d_[k]))?
t2+t1 : t2-t1;
if (strategy == CloseEigenValue) {
q-=lambda;
} else {
q-=((k==n-1)? 1.25 : 1.0)*lambda;
}
}
// the QR transformation
Real sine = 1.0;
Real cosine = 1.0;
Real u = 0.0;
bool recoverUnderflow = false;
for (Size i=l+1; i <= k && !recoverUnderflow; ++i) {
const Real h = cosine*e[i];
const Real p = sine*e[i];
e[i-1] = std::sqrt(p*p+q*q);
if (e[i-1] != 0.0) {
sine = p/e[i-1];
cosine = q/e[i-1];
const Real g = d_[i-1]-u;
const Real t = (d_[i]-g)*sine+2*cosine*h;
u = sine*t;
d_[i-1] = g + u;
q = cosine*t - h;
for (Size j=0; j < ev_.rows(); ++j) {
const Real tmp = ev_[j][i-1];
ev_[j][i-1] = sine*ev_[j][i] + cosine*tmp;
ev_[j][i] = cosine*ev_[j][i] - sine*tmp;
}
} else {
// recover from underflow
d_[i-1] -= u;
e[l] = 0.0;
recoverUnderflow = true;
}
}
if (!recoverUnderflow) {
d_[k] -= u;
e[k] = q;
e[l] = 0.0;
}
}
}
// sort (eigenvalues, eigenvectors),
// code taken from symmetricSchureDecomposition.cpp
std::vector<std::pair<Real, std::vector<Real> > > temp(n);
std::vector<Real> eigenVector(ev_.rows());
for (i=0; i<n; i++) {
if (ev_.rows() > 0)
std::copy(ev_.column_begin(i),
ev_.column_end(i), eigenVector.begin());
temp[i] = std::make_pair(d_[i], eigenVector);
}
std::sort(temp.begin(), temp.end(),
std::greater<std::pair<Real, std::vector<Real> > >());
// first element is positive
for (i=0; i<n; i++) {
d_[i] = temp[i].first;
Real sign = 1.0;
if (ev_.rows() > 0 && temp[i].second[0]<0.0)
sign = -1.0;
for (Size j=0; j<ev_.rows(); ++j) {
ev_[j][i] = sign * temp[i].second[j];
}
}
}
// see NR for abort assumption as it is
// not part of the original Wilkinson algorithm
bool TqrEigenDecomposition::offDiagIsZero(Size k, Array& e) {
return std::fabs(d_[k-1])+std::fabs(d_[k])
== std::fabs(d_[k-1])+std::fabs(d_[k])+std::fabs(e[k]);
}
}
|