File: bfgs.cpp

package info (click to toggle)
quantlib 1.4-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 34,340 kB
  • ctags: 64,765
  • sloc: cpp: 291,654; ansic: 21,484; sh: 11,209; makefile: 4,923; lisp: 86
file content (89 lines) | stat: -rw-r--r-- 3,635 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

 /*
 Copyright (C) 2009 Frdric Degraeve

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/optimization/bfgs.hpp>
#include <ql/math/optimization/problem.hpp>
#include <ql/math/optimization/linesearch.hpp>

namespace QuantLib {

    Disposable<Array> BFGS::getUpdatedDirection(const Problem& P,
                                                Real,
                                                const Array& oldGradient) {
        if (inverseHessian_.rows() == 0)
        {
            // first time in this update, we create needed structures
            inverseHessian_ = Matrix(P.currentValue().size(),
                                     P.currentValue().size(), 0.);
            for (Size i = 0; i < P.currentValue().size(); ++i)
                inverseHessian_[i][i] = 1.;
        }

        Array diffGradient;
        Array diffGradientWithHessianApplied(P.currentValue().size(), 0.);

        diffGradient = lineSearch_->lastGradient() - oldGradient;
        for (Size i = 0; i < P.currentValue().size(); ++i)
            for (Size j = 0; j < P.currentValue().size(); ++j)
                diffGradientWithHessianApplied[i] += inverseHessian_[i][j] * diffGradient[j];

        double fac, fae, fad;
        double sumdg, sumxi;

        fac = fae = sumdg = sumxi = 0.;
        for (Size i = 0; i < P.currentValue().size(); ++i)
        {
            fac += diffGradient[i] * lineSearch_->searchDirection()[i];
            fae += diffGradient[i] * diffGradientWithHessianApplied[i];
            sumdg += std::pow(diffGradient[i], 2.);
            sumxi += std::pow(lineSearch_->searchDirection()[i], 2.);
        }

        if (fac > std::sqrt(1e-8 * sumdg * sumxi))  // skip update if fac not sufficiently positive
        {
            fac = 1.0 / fac;
            fad = 1.0 / fae;

            for (Size i = 0; i < P.currentValue().size(); ++i)
                diffGradient[i] = fac * lineSearch_->searchDirection()[i] - fad * diffGradientWithHessianApplied[i];

            for (Size i = 0; i < P.currentValue().size(); ++i)
                for (Size j = 0; j < P.currentValue().size(); ++j)
                {
                    inverseHessian_[i][j] += fac * lineSearch_->searchDirection()[i] * lineSearch_->searchDirection()[j];
                    inverseHessian_[i][j] -= fad * diffGradientWithHessianApplied[i] * diffGradientWithHessianApplied[j];
                    inverseHessian_[i][j] += fae * diffGradient[i] * diffGradient[j];
                }
        }
        //else
        //  throw "BFGS: FAC not sufficiently positive";


        Array direction(P.currentValue().size());
        for (Size i = 0; i < P.currentValue().size(); ++i)
        {
            direction[i] = 0.0;
            for (Size j = 0; j < P.currentValue().size(); ++j)
                direction[i] -= inverseHessian_[i][j] * lineSearch_->lastGradient()[j];
        }

        return direction;
    }

}