File: fdmhestonvariancemesher.cpp

package info (click to toggle)
quantlib 1.4-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 34,340 kB
  • ctags: 64,765
  • sloc: cpp: 291,654; ansic: 21,484; sh: 11,209; makefile: 4,923; lisp: 86
file content (134 lines) | stat: -rw-r--r-- 5,390 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Andreas Gaida
 Copyright (C) 2008 Ralph Schreyer
 Copyright (C) 2008 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/functional.hpp>
#include <ql/math/distributions/chisquaredistribution.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/methods/finitedifferences/meshers/fdmhestonvariancemesher.hpp>

#include <set>
#include <algorithm>

namespace QuantLib {

    FdmHestonVarianceMesher::FdmHestonVarianceMesher(
        Size size,
        const boost::shared_ptr<HestonProcess> & process,
        Time maturity, Size tAvgSteps, Real epsilon)
        : Fdm1dMesher(size) {

        std::vector<Real> vGrid(size, 0.0), pGrid(size, 0.0);
        const Real df  = 4*process->theta()*process->kappa()/
                            square<Real>()(process->sigma());
        try {
            std::multiset<std::pair<Real, Real> > grid;
            
            for (Size l=1; l<=tAvgSteps; ++l) {
                const Real t = (maturity*l)/tAvgSteps;
                const Real ncp = 4*process->kappa()*std::exp(-process->kappa()*t)
                    /(square<Real>()(process->sigma())
                    *(1-std::exp(-process->kappa()*t)))*process->v0();
                const Real k = square<Real>()(process->sigma())
                    *(1-std::exp(-process->kappa()*t))/(4*process->kappa());

                const Real qMin = 0.0; // v_min = 0.0;
                const Real qMax = std::max(process->v0(),
                    k*InverseNonCentralChiSquareDistribution(
                                            df, ncp, 1000,  1e-8)(1-epsilon));

                const Real minVStep=(qMax-qMin)/(50*size);
                Real ps,p = 0.0;

                Real vTmp = qMin;
                grid.insert(std::pair<Real, Real>(qMin, epsilon));
                
                for (Size i=1; i < size; ++i) {
                    ps = (1 - epsilon - p)/(size-i);
                    p += ps;
                    const Real tmp = k*InverseNonCentralChiSquareDistribution(
                        df, ncp, 1000, 1e-8)(p);

                    const Real vx = std::max(vTmp+minVStep, tmp);
                    p = NonCentralChiSquareDistribution(df, ncp)(vx/k);
                    vTmp=vx;
                    grid.insert(std::pair<Real, Real>(vx, p));
                }
            }
            QL_REQUIRE(grid.size() == size*tAvgSteps, 
                       "something wrong with the grid size");
            
            std::vector<std::pair<Real, Real> > tp(grid.begin(), grid.end());

            for (Size i=0; i < size; ++i) {
                const Size b = (i*tp.size())/size;
                const Size e = ((i+1)*tp.size())/size;
                for (Size j=b; j < e; ++j) {
                    vGrid[i]+=tp[j].first/(e-b);
                    pGrid[i]+=tp[j].second/(e-b);
                }
            }
        } 
        catch (const Error&) {
            // use default mesh
            const Real vol = process->sigma()*
                std::sqrt(process->theta()/(2*process->kappa()));

            const Real mean = process->theta();
            const Real upperBound = std::max(process->v0()+4*vol, mean+4*vol);
            const Real lowerBound
                = std::max(0.0, std::min(process->v0()-4*vol, mean-4*vol));

            for (Size i=0; i < size; ++i) {
                pGrid[i] = i/(size-1.0);
                vGrid[i] = lowerBound + i*(upperBound-lowerBound)/(size-1.0);
            }
        }

        Real skewHint = ((process->kappa() != 0.0) 
                ? std::max(1.0, process->sigma()/process->kappa()) : 1.0);

        std::sort(pGrid.begin(), pGrid.end());
        volaEstimate_ = GaussLobattoIntegral(100000, 1e-4)(
            boost::function1<Real, Real>(
                compose(std::ptr_fun<Real, Real>(std::sqrt),
                        LinearInterpolation(pGrid.begin(), pGrid.end(),
                        vGrid.begin()))),
            pGrid.front(), pGrid.back())*std::pow(skewHint, 1.5);
        
        const Real v0 = process->v0();
        for (Size i=1; i<vGrid.size(); ++i) {
            if (vGrid[i-1] <= v0 && vGrid[i] >= v0) {
                if (std::fabs(vGrid[i-1] - v0) < std::fabs(vGrid[i] - v0))
                    vGrid[i-1] = v0;
                else
                    vGrid[i] = v0;
            }
        }

        std::copy(vGrid.begin(), vGrid.end(), locations_.begin());

        for (Size i=0; i < size-1; ++i) {
            dminus_[i+1] = dplus_[i] = vGrid[i+1] - vGrid[i];
        }
        dplus_.back() = dminus_.front() = Null<Real>();
    }
}