1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Andreas Gaida
Copyright (C) 2008 Ralph Schreyer
Copyright (C) 2008 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/functional.hpp>
#include <ql/math/distributions/chisquaredistribution.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/methods/finitedifferences/meshers/fdmhestonvariancemesher.hpp>
#include <set>
#include <algorithm>
namespace QuantLib {
FdmHestonVarianceMesher::FdmHestonVarianceMesher(
Size size,
const boost::shared_ptr<HestonProcess> & process,
Time maturity, Size tAvgSteps, Real epsilon)
: Fdm1dMesher(size) {
std::vector<Real> vGrid(size, 0.0), pGrid(size, 0.0);
const Real df = 4*process->theta()*process->kappa()/
square<Real>()(process->sigma());
try {
std::multiset<std::pair<Real, Real> > grid;
for (Size l=1; l<=tAvgSteps; ++l) {
const Real t = (maturity*l)/tAvgSteps;
const Real ncp = 4*process->kappa()*std::exp(-process->kappa()*t)
/(square<Real>()(process->sigma())
*(1-std::exp(-process->kappa()*t)))*process->v0();
const Real k = square<Real>()(process->sigma())
*(1-std::exp(-process->kappa()*t))/(4*process->kappa());
const Real qMin = 0.0; // v_min = 0.0;
const Real qMax = std::max(process->v0(),
k*InverseNonCentralChiSquareDistribution(
df, ncp, 1000, 1e-8)(1-epsilon));
const Real minVStep=(qMax-qMin)/(50*size);
Real ps,p = 0.0;
Real vTmp = qMin;
grid.insert(std::pair<Real, Real>(qMin, epsilon));
for (Size i=1; i < size; ++i) {
ps = (1 - epsilon - p)/(size-i);
p += ps;
const Real tmp = k*InverseNonCentralChiSquareDistribution(
df, ncp, 1000, 1e-8)(p);
const Real vx = std::max(vTmp+minVStep, tmp);
p = NonCentralChiSquareDistribution(df, ncp)(vx/k);
vTmp=vx;
grid.insert(std::pair<Real, Real>(vx, p));
}
}
QL_REQUIRE(grid.size() == size*tAvgSteps,
"something wrong with the grid size");
std::vector<std::pair<Real, Real> > tp(grid.begin(), grid.end());
for (Size i=0; i < size; ++i) {
const Size b = (i*tp.size())/size;
const Size e = ((i+1)*tp.size())/size;
for (Size j=b; j < e; ++j) {
vGrid[i]+=tp[j].first/(e-b);
pGrid[i]+=tp[j].second/(e-b);
}
}
}
catch (const Error&) {
// use default mesh
const Real vol = process->sigma()*
std::sqrt(process->theta()/(2*process->kappa()));
const Real mean = process->theta();
const Real upperBound = std::max(process->v0()+4*vol, mean+4*vol);
const Real lowerBound
= std::max(0.0, std::min(process->v0()-4*vol, mean-4*vol));
for (Size i=0; i < size; ++i) {
pGrid[i] = i/(size-1.0);
vGrid[i] = lowerBound + i*(upperBound-lowerBound)/(size-1.0);
}
}
Real skewHint = ((process->kappa() != 0.0)
? std::max(1.0, process->sigma()/process->kappa()) : 1.0);
std::sort(pGrid.begin(), pGrid.end());
volaEstimate_ = GaussLobattoIntegral(100000, 1e-4)(
boost::function1<Real, Real>(
compose(std::ptr_fun<Real, Real>(std::sqrt),
LinearInterpolation(pGrid.begin(), pGrid.end(),
vGrid.begin()))),
pGrid.front(), pGrid.back())*std::pow(skewHint, 1.5);
const Real v0 = process->v0();
for (Size i=1; i<vGrid.size(); ++i) {
if (vGrid[i-1] <= v0 && vGrid[i] >= v0) {
if (std::fabs(vGrid[i-1] - v0) < std::fabs(vGrid[i] - v0))
vGrid[i-1] = v0;
else
vGrid[i] = v0;
}
}
std::copy(vGrid.begin(), vGrid.end(), locations_.begin());
for (Size i=0; i < size-1; ++i) {
dminus_[i+1] = dplus_[i] = vGrid[i+1] - vGrid[i];
}
dplus_.back() = dminus_.front() = Null<Real>();
}
}
|