1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2012 Ferdinando Ametrano
Copyright (C) 2006 Mark Joshi
Copyright (C) 2006 StatPro Italia srl
Copyright (C) 2007 Cristina Duminuco
Copyright (C) 2007 Chiara Fornarola
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/pricingengines/blackformula.hpp>
#include <ql/math/solvers1d/newtonsafe.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <boost/math/special_functions/atanh.hpp>
namespace {
void checkParameters(QuantLib::Real strike,
QuantLib::Real forward,
QuantLib::Real displacement)
{
QL_REQUIRE(displacement >= 0.0, "displacement ("
<< displacement
<< ") must be non-negative");
QL_REQUIRE(strike + displacement >= 0.0,
"strike + displacement (" << strike << " + " << displacement
<< ") must be non-negative");
QL_REQUIRE(forward + displacement > 0.0, "forward + displacement ("
<< forward << " + "
<< displacement
<< ") must be positive");
}
}
namespace QuantLib {
Real blackFormula(Option::Type optionType,
Real strike,
Real forward,
Real stdDev,
Real discount,
Real displacement)
{
checkParameters(strike, forward, displacement);
QL_REQUIRE(stdDev>=0.0,
"stdDev (" << stdDev << ") must be non-negative");
QL_REQUIRE(discount>0.0,
"discount (" << discount << ") must be positive");
if (stdDev==0.0)
return std::max((forward-strike)*optionType, Real(0.0))*discount;
forward = forward + displacement;
strike = strike + displacement;
// since displacement is non-negative strike==0 iff displacement==0
// so returning forward*discount is OK
if (strike==0.0)
return (optionType==Option::Call ? forward*discount : 0.0);
Real d1 = std::log(forward/strike)/stdDev + 0.5*stdDev;
Real d2 = d1 - stdDev;
CumulativeNormalDistribution phi;
Real nd1 = phi(optionType*d1);
Real nd2 = phi(optionType*d2);
Real result = discount * optionType * (forward*nd1 - strike*nd2);
QL_ENSURE(result>=0.0,
"negative value (" << result << ") for " <<
stdDev << " stdDev, " <<
optionType << " option, " <<
strike << " strike , " <<
forward << " forward");
return result;
}
Real blackFormula(const boost::shared_ptr<PlainVanillaPayoff>& payoff,
Real forward,
Real stdDev,
Real discount,
Real displacement) {
return blackFormula(payoff->optionType(),
payoff->strike(), forward, stdDev, discount, displacement);
}
Real blackFormulaImpliedStdDevApproximation(Option::Type optionType,
Real strike,
Real forward,
Real blackPrice,
Real discount,
Real displacement)
{
checkParameters(strike, forward, displacement);
QL_REQUIRE(blackPrice>=0.0,
"blackPrice (" << blackPrice << ") must be non-negative");
QL_REQUIRE(discount>0.0,
"discount (" << discount << ") must be positive");
Real stdDev;
forward = forward + displacement;
strike = strike + displacement;
if (strike==forward)
// Brenner-Subrahmanyan (1988) and Feinstein (1988) ATM approx.
stdDev = blackPrice/discount*std::sqrt(2.0 * M_PI)/forward;
else {
// Corrado and Miller extended moneyness approximation
Real moneynessDelta = optionType*(forward-strike);
Real moneynessDelta_2 = moneynessDelta/2.0;
Real temp = blackPrice/discount - moneynessDelta_2;
Real moneynessDelta_PI = moneynessDelta*moneynessDelta/M_PI;
Real temp2 = temp*temp-moneynessDelta_PI;
if (temp2<0.0) // approximation breaks down, 2 alternatives:
// 1. zero it
temp2=0.0;
// 2. Manaster-Koehler (1982) efficient Newton-Raphson seed
//return std::fabs(std::log(forward/strike))*std::sqrt(2.0);
temp2 = std::sqrt(temp2);
temp += temp2;
temp *= std::sqrt(2.0 * M_PI);
stdDev = temp/(forward+strike);
}
QL_ENSURE(stdDev>=0.0,
"stdDev (" << stdDev << ") must be non-negative");
return stdDev;
}
Real blackFormulaImpliedStdDevApproximation(
const boost::shared_ptr<PlainVanillaPayoff>& payoff,
Real forward,
Real blackPrice,
Real discount,
Real displacement) {
return blackFormulaImpliedStdDevApproximation(payoff->optionType(),
payoff->strike(), forward, blackPrice, discount, displacement);
}
class BlackImpliedStdDevHelper {
public:
BlackImpliedStdDevHelper(Option::Type optionType,
Real strike,
Real forward,
Real undiscountedBlackPrice,
Real displacement = 0.0)
: halfOptionType_(0.5*optionType), signedStrike_(optionType*(strike+displacement)),
signedForward_(optionType*(forward+displacement)),
undiscountedBlackPrice_(undiscountedBlackPrice)
{
checkParameters(strike, forward, displacement);
QL_REQUIRE(undiscountedBlackPrice>=0.0,
"undiscounted Black price (" <<
undiscountedBlackPrice << ") must be non-negative");
signedMoneyness_ = optionType*std::log((forward+displacement)/(strike+displacement));
}
Real operator()(Real stdDev) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(stdDev>=0.0,
"stdDev (" << stdDev << ") must be non-negative");
#endif
if (stdDev==0.0)
return std::max(signedForward_-signedStrike_, Real(0.0))
- undiscountedBlackPrice_;
Real temp = halfOptionType_*stdDev;
Real d = signedMoneyness_/stdDev;
Real signedD1 = d + temp;
Real signedD2 = d - temp;
Real result = signedForward_ * N_(signedD1)
- signedStrike_ * N_(signedD2);
// numerical inaccuracies can yield a negative answer
return std::max(Real(0.0), result) - undiscountedBlackPrice_;
}
Real derivative(Real stdDev) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(stdDev>=0.0,
"stdDev (" << stdDev << ") must be non-negative");
#endif
Real signedD1 = signedMoneyness_/stdDev + halfOptionType_*stdDev;
return signedForward_*N_.derivative(signedD1);
}
private:
Real halfOptionType_;
Real signedStrike_, signedForward_;
Real undiscountedBlackPrice_, signedMoneyness_;
CumulativeNormalDistribution N_;
};
Real blackFormulaImpliedStdDev(Option::Type optionType,
Real strike,
Real forward,
Real blackPrice,
Real discount,
Real displacement,
Real guess,
Real accuracy,
Natural maxIterations)
{
checkParameters(strike, forward, displacement);
QL_REQUIRE(discount>0.0,
"discount (" << discount << ") must be positive");
QL_REQUIRE(blackPrice>=0.0,
"option price (" << blackPrice << ") must be non-negative");
// check the price of the "other" option implied by put-call paity
Real otherOptionPrice = blackPrice - optionType*(forward-strike)*discount;
QL_REQUIRE(otherOptionPrice>=0.0,
"negative " << Option::Type(-1*optionType) <<
" price (" << otherOptionPrice <<
") implied by put-call parity. No solution exists for " <<
optionType << " strike " << strike <<
", forward " << forward <<
", price " << blackPrice <<
", deflator " << discount);
// solve for the out-of-the-money option which has
// greater vega/price ratio, i.e.
// it is numerically more robust for implied vol calculations
if (optionType==Option::Put && strike>forward) {
optionType = Option::Call;
blackPrice = otherOptionPrice;
}
if (optionType==Option::Call && strike<forward) {
optionType = Option::Put;
blackPrice = otherOptionPrice;
}
strike = strike + displacement;
forward = forward + displacement;
if (guess==Null<Real>())
guess = blackFormulaImpliedStdDevApproximation(
optionType, strike, forward, blackPrice, discount, displacement);
else
QL_REQUIRE(guess>=0.0,
"stdDev guess (" << guess << ") must be non-negative");
BlackImpliedStdDevHelper f(optionType, strike, forward,
blackPrice/discount);
NewtonSafe solver;
solver.setMaxEvaluations(maxIterations);
Real minSdtDev = 0.0, maxStdDev = 24.0; // 24 = 300% * sqrt(60)
Real stdDev = solver.solve(f, accuracy, guess, minSdtDev, maxStdDev);
QL_ENSURE(stdDev>=0.0,
"stdDev (" << stdDev << ") must be non-negative");
return stdDev;
}
Real blackFormulaImpliedStdDev(
const boost::shared_ptr<PlainVanillaPayoff>& payoff,
Real forward,
Real blackPrice,
Real discount,
Real displacement,
Real guess,
Real accuracy,
Natural maxIterations) {
return blackFormulaImpliedStdDev(payoff->optionType(), payoff->strike(),
forward, blackPrice, discount, displacement, guess, accuracy, maxIterations);
}
Real blackFormulaCashItmProbability(Option::Type optionType,
Real strike,
Real forward,
Real stdDev,
Real displacement) {
checkParameters(strike, forward, displacement);
if (stdDev==0.0)
return (forward*optionType > strike*optionType ? 1.0 : 0.0);
forward = forward + displacement;
strike = strike + displacement;
if (strike==0.0)
return (optionType==Option::Call ? 1.0 : 0.0);
Real d2 = std::log(forward/strike)/stdDev - 0.5*stdDev;
CumulativeNormalDistribution phi;
return phi(optionType*d2);
}
Real blackFormulaCashItmProbability(
const boost::shared_ptr<PlainVanillaPayoff>& payoff,
Real forward,
Real stdDev,
Real displacement) {
return blackFormulaCashItmProbability(payoff->optionType(),
payoff->strike(), forward, stdDev , displacement);
}
Real blackFormulaVolDerivative(Rate strike,
Rate forward,
Real stdDev,
Real expiry,
Real discount,
Real displacement)
{
return blackFormulaStdDevDerivative(strike,
forward,
stdDev,
discount,
displacement)*std::sqrt(expiry);
}
Real blackFormulaStdDevDerivative(Rate strike,
Rate forward,
Real stdDev,
Real discount,
Real displacement)
{
checkParameters(strike, forward, displacement);
QL_REQUIRE(stdDev>=0.0,
"stdDev (" << stdDev << ") must be non-negative");
QL_REQUIRE(discount>0.0,
"discount (" << discount << ") must be positive");
forward = forward + displacement;
strike = strike + displacement;
if (stdDev==0.0 || strike==0.0)
return 0.0;
Real d1 = std::log(forward/strike)/stdDev + .5*stdDev;
return discount * forward *
CumulativeNormalDistribution().derivative(d1);
}
Real blackFormulaStdDevDerivative(
const boost::shared_ptr<PlainVanillaPayoff>& payoff,
Real forward,
Real stdDev,
Real discount,
Real displacement) {
return blackFormulaStdDevDerivative(payoff->strike(), forward,
stdDev, discount, displacement);
}
Real bachelierBlackFormula(Option::Type optionType,
Real strike,
Real forward,
Real stdDev,
Real discount)
{
QL_REQUIRE(stdDev>=0.0,
"stdDev (" << stdDev << ") must be non-negative");
QL_REQUIRE(discount>0.0,
"discount (" << discount << ") must be positive");
Real d = (forward-strike)*optionType, h = d/stdDev;
if (stdDev==0.0)
return discount*std::max(d, 0.0);
CumulativeNormalDistribution phi;
Real result = discount*(stdDev*phi.derivative(h) + d*phi(h));
QL_ENSURE(result>=0.0,
"negative value (" << result << ") for " <<
stdDev << " stdDev, " <<
optionType << " option, " <<
strike << " strike , " <<
forward << " forward");
return result;
}
Real bachelierBlackFormula(
const boost::shared_ptr<PlainVanillaPayoff>& payoff,
Real forward,
Real stdDev,
Real discount) {
return bachelierBlackFormula(payoff->optionType(),
payoff->strike(), forward, stdDev, discount);
}
static Real h(Real eta) {
const static Real A0 = 3.994961687345134e-1;
const static Real A1 = 2.100960795068497e+1;
const static Real A2 = 4.980340217855084e+1;
const static Real A3 = 5.988761102690991e+2;
const static Real A4 = 1.848489695437094e+3;
const static Real A5 = 6.106322407867059e+3;
const static Real A6 = 2.493415285349361e+4;
const static Real A7 = 1.266458051348246e+4;
const static Real B0 = 1.000000000000000e+0;
const static Real B1 = 4.990534153589422e+1;
const static Real B2 = 3.093573936743112e+1;
const static Real B3 = 1.495105008310999e+3;
const static Real B4 = 1.323614537899738e+3;
const static Real B5 = 1.598919697679745e+4;
const static Real B6 = 2.392008891720782e+4;
const static Real B7 = 3.608817108375034e+3;
const static Real B8 = -2.067719486400926e+2;
const static Real B9 = 1.174240599306013e+1;
QL_REQUIRE(eta>=0.0,
"eta (" << eta << ") must be non-negative");
const Real num = A0 + eta * (A1 + eta * (A2 + eta * (A3 + eta * (A4 + eta
* (A5 + eta * (A6 + eta * A7))))));
const Real den = B0 + eta * (B1 + eta * (B2 + eta * (B3 + eta * (B4 + eta
* (B5 + eta * (B6 + eta * (B7 + eta * (B8 + eta * B9))))))));
return std::sqrt(eta) * (num / den);
}
Real bachelierBlackFormulaImpliedVol(Option::Type optionType,
Real strike,
Real forward,
Real tte,
Real bachelierPrice,
Real discount) {
const static Real SQRT_QL_EPSILON = std::sqrt(QL_EPSILON);
QL_REQUIRE(tte>0.0,
"tte (" << tte << ") must be positive");
Real forwardPremium = bachelierPrice/discount;
Real straddlePremium;
if (optionType==Option::Call){
straddlePremium = 2.0 * forwardPremium - (forward - strike);
} else {
straddlePremium = 2.0 * forwardPremium + (forward - strike);
}
Real nu = (forward - strike) / straddlePremium;
QL_REQUIRE(nu<=1.0,
"nu (" << nu << ") must be <= 1.0");
QL_REQUIRE(nu>=-1.0,
"nu (" << nu << ") must be >= -1.0");
nu = std::max(-1.0 + QL_EPSILON, std::min(nu,1.0 - QL_EPSILON));
// nu / arctanh(nu) -> 1 as nu -> 0
Real eta = (std::fabs(nu) < SQRT_QL_EPSILON) ? 1.0 : nu / boost::math::atanh(nu);
Real heta = h(eta);
Real impliedBpvol = std::sqrt(M_PI / (2 * tte)) * straddlePremium * heta;
return impliedBpvol;
}
}
|