1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2002, 2003, 2004 Ferdinando Ametrano
Copyright (C) 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file forwardengine.hpp
\brief Forward (strike-resetting) vanilla-option engine
*/
#ifndef quantlib_forward_engine_hpp
#define quantlib_forward_engine_hpp
#include <ql/instruments/forwardvanillaoption.hpp>
#include <ql/instruments/vanillaoption.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/termstructures/volatility/equityfx/impliedvoltermstructure.hpp>
#include <ql/termstructures/yield/impliedtermstructure.hpp>
#include <ql/instruments/payoffs.hpp>
#include <ql/exercise.hpp>
namespace QuantLib {
//! %Forward engine for vanilla options
/*! \ingroup forwardengines
\test
- the correctness of the returned value is tested by
reproducing results available in literature.
- the correctness of the returned greeks is tested by
reproducing numerical derivatives.
*/
template <class Engine>
class ForwardVanillaEngine
: public GenericEngine<ForwardOptionArguments<VanillaOption::arguments>,
VanillaOption::results> {
public:
ForwardVanillaEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>&);
void calculate() const;
protected:
void setup() const;
void getOriginalResults() const;
boost::shared_ptr<GeneralizedBlackScholesProcess> process_;
mutable boost::shared_ptr<Engine> originalEngine_;
mutable VanillaOption::arguments* originalArguments_;
mutable const VanillaOption::results* originalResults_;
};
// template definitions
template <class Engine>
ForwardVanillaEngine<Engine>::ForwardVanillaEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process)
: process_(process) {
registerWith(process_);
}
template <class Engine>
void ForwardVanillaEngine<Engine>::setup() const {
boost::shared_ptr<StrikedTypePayoff> argumentsPayoff =
boost::dynamic_pointer_cast<StrikedTypePayoff>(
this->arguments_.payoff);
QL_REQUIRE(argumentsPayoff, "wrong payoff given");
boost::shared_ptr<StrikedTypePayoff> payoff(
new PlainVanillaPayoff(argumentsPayoff->optionType(),
this->arguments_.moneyness *
process_->x0()));
// maybe the forward value is "better", in some fashion
// the right level is needed in order to interpolate
// the vol
Handle<Quote> spot = process_->stateVariable();
QL_REQUIRE(spot->value() >= 0.0, "negative or null underlting given");
Handle<YieldTermStructure> dividendYield(
boost::shared_ptr<YieldTermStructure>(
new ImpliedTermStructure(process_->dividendYield(),
this->arguments_.resetDate)));
Handle<YieldTermStructure> riskFreeRate(
boost::shared_ptr<YieldTermStructure>(
new ImpliedTermStructure(process_->riskFreeRate(),
this->arguments_.resetDate)));
// The following approach is ok if the vol is at most
// time dependant. It is plain wrong if it is asset dependant.
// In the latter case the right solution would be stochastic
// volatility or at least local volatility (which unfortunately
// implies an unrealistic time-decreasing smile)
Handle<BlackVolTermStructure> blackVolatility(
boost::shared_ptr<BlackVolTermStructure>(
new ImpliedVolTermStructure(process_->blackVolatility(),
this->arguments_.resetDate)));
boost::shared_ptr<GeneralizedBlackScholesProcess> fwdProcess(
new GeneralizedBlackScholesProcess(spot, dividendYield,
riskFreeRate,
blackVolatility));
originalEngine_ = boost::shared_ptr<Engine>(new Engine(fwdProcess));
originalArguments_ =
dynamic_cast<VanillaOption::arguments*>(
originalEngine_->getArguments());
QL_REQUIRE(originalArguments_, "wrong engine type");
originalResults_ =
dynamic_cast<const VanillaOption::results*>(
originalEngine_->getResults());
QL_REQUIRE(originalResults_, "wrong engine type");
originalArguments_->payoff = payoff;
originalArguments_->exercise = this->arguments_.exercise;
originalArguments_->validate();
}
template <class Engine>
void ForwardVanillaEngine<Engine>::calculate() const {
setup();
originalEngine_->calculate();
getOriginalResults();
}
template <class Engine>
void ForwardVanillaEngine<Engine>::getOriginalResults() const {
DayCounter rfdc = process_->riskFreeRate()->dayCounter();
DayCounter divdc = process_->dividendYield()->dayCounter();
Time resetTime = rfdc.yearFraction(
process_->riskFreeRate()->referenceDate(),
this->arguments_.resetDate);
DiscountFactor discQ = process_->dividendYield()->discount(
this->arguments_.resetDate);
this->results_.value = discQ * originalResults_->value;
// I need the strike derivative here ...
this->results_.delta = discQ * (originalResults_->delta +
this->arguments_.moneyness * originalResults_->strikeSensitivity);
this->results_.gamma = 0.0;
this->results_.theta = process_->dividendYield()->
zeroRate(this->arguments_.resetDate, divdc, Continuous, NoFrequency)
* this->results_.value;
this->results_.vega = discQ * originalResults_->vega;
this->results_.rho = discQ * originalResults_->rho;
this->results_.dividendRho = - resetTime * this->results_.value
+ discQ * originalResults_->dividendRho;
}
}
#endif
|