1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file analyticbsmhullwhiteengine.hpp
\brief analytic Black-Scholes engines including stochastic interest rates
*/
#include <ql/pricingengines/vanilla/analyticbsmhullwhiteengine.hpp>
#include <ql/pricingengines/vanilla/analyticeuropeanengine.hpp>
#include <ql/termstructures/volatility/equityfx/blackvoltermstructure.hpp>
namespace QuantLib {
namespace {
class ShiftedBlackVolTermStructure : public BlackVolTermStructure {
public:
ShiftedBlackVolTermStructure(
Real varianceOffset,
const Handle<BlackVolTermStructure> & volTS)
: BlackVolTermStructure(volTS->referenceDate(),
volTS->calendar(),
Following,
volTS->dayCounter()),
varianceOffset_(varianceOffset),
volTS_(volTS) { }
Real minStrike() const { return volTS_->minStrike(); }
Real maxStrike() const { return volTS_->maxStrike(); }
Date maxDate() const { return volTS_->maxDate(); }
protected:
Real blackVarianceImpl(Time t, Real strike) const {
return volTS_->blackVariance(t, strike, true)+varianceOffset_;
}
Volatility blackVolImpl(Time t, Real strike) const {
Time nonZeroMaturity = (t==0.0 ? 0.00001 : t);
Real var = blackVarianceImpl(nonZeroMaturity, strike);
return std::sqrt(var/nonZeroMaturity);
}
private:
const Real varianceOffset_;
const Handle<BlackVolTermStructure> volTS_;
};
}
AnalyticBSMHullWhiteEngine::AnalyticBSMHullWhiteEngine(
Real equityShortRateCorrelation,
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
const boost::shared_ptr<HullWhite> & model)
: GenericModelEngine<HullWhite,
VanillaOption::arguments,
VanillaOption::results>(model),
rho_(equityShortRateCorrelation), process_(process) {
registerWith(process_);
}
void AnalyticBSMHullWhiteEngine::calculate() const {
QL_REQUIRE(process_->x0() > 0.0, "negative or null underlying given");
const boost::shared_ptr<StrikedTypePayoff> payoff =
boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-striked payoff given");
const boost::shared_ptr<Exercise> exercise = arguments_.exercise;
Time t = process_->riskFreeRate()->dayCounter().yearFraction(
process_->riskFreeRate()->referenceDate(),
exercise->lastDate());
const Real a = model_->params()[0];
const Real sigma = model_->params()[1];
const Real eta =
process_->blackVolatility()->blackVol(exercise->lastDate(),
payoff->strike());
Real varianceOffset;
if (a*t > std::pow(QL_EPSILON, 0.25)) {
const Real v = sigma*sigma/(a*a)
*(t + 2/a*std::exp(-a*t) - 1/(2*a)*std::exp(-2*a*t) - 3/(2*a));
const Real mu = 2*rho_*sigma*eta/a*(t-1/a*(1-std::exp(-a*t)));
varianceOffset = v + mu;
}
else {
// low-a algebraic limit
const Real v = sigma*sigma*t*t*t*(1/3.0-0.25*a*t+7/60.0*a*a*t*t);
const Real mu = rho_*sigma*eta*t*t*(1-a*t/3.0+a*a*t*t/12.0);
varianceOffset = v + mu;
}
Handle<BlackVolTermStructure> volTS(
boost::shared_ptr<BlackVolTermStructure>(
new ShiftedBlackVolTermStructure(varianceOffset,
process_->blackVolatility())));
boost::shared_ptr<GeneralizedBlackScholesProcess> adjProcess(
new GeneralizedBlackScholesProcess(process_->stateVariable(),
process_->dividendYield(),
process_->riskFreeRate(),
volTS));
boost::shared_ptr<AnalyticEuropeanEngine> bsmEngine(
new AnalyticEuropeanEngine(adjProcess));
VanillaOption(payoff, exercise).setupArguments(
bsmEngine->getArguments());
bsmEngine->calculate();
results_ = *dynamic_cast<const OneAssetOption::results*>(
bsmEngine->getResults());
}
}
|