File: analyticbsmhullwhiteengine.cpp

package info (click to toggle)
quantlib 1.4-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 34,340 kB
  • ctags: 64,765
  • sloc: cpp: 291,654; ansic: 21,484; sh: 11,209; makefile: 4,923; lisp: 86
file content (131 lines) | stat: -rw-r--r-- 5,516 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2007 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file analyticbsmhullwhiteengine.hpp
    \brief analytic Black-Scholes engines including stochastic interest rates
*/

#include <ql/pricingengines/vanilla/analyticbsmhullwhiteengine.hpp>
#include <ql/pricingengines/vanilla/analyticeuropeanengine.hpp>
#include <ql/termstructures/volatility/equityfx/blackvoltermstructure.hpp>

namespace QuantLib {

    namespace {

        class ShiftedBlackVolTermStructure : public BlackVolTermStructure {
          public:
            ShiftedBlackVolTermStructure(
                Real varianceOffset,
                const Handle<BlackVolTermStructure> & volTS)
                : BlackVolTermStructure(volTS->referenceDate(),
                                        volTS->calendar(),
                                        Following,
                                        volTS->dayCounter()),
                  varianceOffset_(varianceOffset),
                  volTS_(volTS) { }

            Real minStrike() const { return volTS_->minStrike(); }
            Real maxStrike() const { return volTS_->maxStrike(); }
            Date maxDate() const   { return volTS_->maxDate(); }

          protected:
            Real blackVarianceImpl(Time t, Real strike) const {
                return volTS_->blackVariance(t, strike, true)+varianceOffset_;
            }
            Volatility blackVolImpl(Time t, Real strike) const {
                Time nonZeroMaturity = (t==0.0 ? 0.00001 : t);
                Real var = blackVarianceImpl(nonZeroMaturity, strike);
                return std::sqrt(var/nonZeroMaturity);
            }
          private:
            const Real varianceOffset_;
            const Handle<BlackVolTermStructure> volTS_;
        };
    }

    AnalyticBSMHullWhiteEngine::AnalyticBSMHullWhiteEngine(
             Real equityShortRateCorrelation,
             const boost::shared_ptr<GeneralizedBlackScholesProcess>& process,
             const boost::shared_ptr<HullWhite> & model)
    : GenericModelEngine<HullWhite,
                         VanillaOption::arguments,
                         VanillaOption::results>(model),
      rho_(equityShortRateCorrelation), process_(process) {
        registerWith(process_);
    }

    void AnalyticBSMHullWhiteEngine::calculate() const {

        QL_REQUIRE(process_->x0() > 0.0, "negative or null underlying given");

        const boost::shared_ptr<StrikedTypePayoff> payoff =
            boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
        QL_REQUIRE(payoff, "non-striked payoff given");

        const boost::shared_ptr<Exercise> exercise = arguments_.exercise;

        Time t = process_->riskFreeRate()->dayCounter().yearFraction(
                                    process_->riskFreeRate()->referenceDate(),
                                    exercise->lastDate());

        const Real a = model_->params()[0];
        const Real sigma = model_->params()[1];
        const Real eta =
            process_->blackVolatility()->blackVol(exercise->lastDate(),
                                                  payoff->strike());

        Real varianceOffset;
        if (a*t > std::pow(QL_EPSILON, 0.25)) {
            const Real v = sigma*sigma/(a*a)
                *(t + 2/a*std::exp(-a*t) - 1/(2*a)*std::exp(-2*a*t) - 3/(2*a));
            const Real mu = 2*rho_*sigma*eta/a*(t-1/a*(1-std::exp(-a*t)));

            varianceOffset = v + mu;
        }
        else {
            // low-a algebraic limit
            const Real v = sigma*sigma*t*t*t*(1/3.0-0.25*a*t+7/60.0*a*a*t*t);
            const Real mu = rho_*sigma*eta*t*t*(1-a*t/3.0+a*a*t*t/12.0);

            varianceOffset = v + mu;
        }

        Handle<BlackVolTermStructure> volTS(
             boost::shared_ptr<BlackVolTermStructure>(
              new ShiftedBlackVolTermStructure(varianceOffset,
                                               process_->blackVolatility())));

        boost::shared_ptr<GeneralizedBlackScholesProcess> adjProcess(
                new GeneralizedBlackScholesProcess(process_->stateVariable(),
                                                   process_->dividendYield(),
                                                   process_->riskFreeRate(),
                                                   volTS));

        boost::shared_ptr<AnalyticEuropeanEngine> bsmEngine(
                                      new AnalyticEuropeanEngine(adjProcess));

        VanillaOption(payoff, exercise).setupArguments(
                                                   bsmEngine->getArguments());
        bsmEngine->calculate();

        results_ = *dynamic_cast<const OneAssetOption::results*>(
                                                    bsmEngine->getResults());
    }
}