1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2012 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file analytichestonengine.cpp
\brief analytic Heston-Hull-White engine based on the H1-HW approximation
*/
#include <ql/math/distributions/gammadistribution.hpp>
#include <ql/pricingengines/vanilla/analytich1hwengine.hpp>
namespace QuantLib {
// integration helper class
class AnalyticH1HWEngine::Fj_Helper
: public std::unary_function<std::complex<Real>, Real> {
public:
Fj_Helper(const Handle<HestonModel>& hestonModel,
const boost::shared_ptr<HullWhite>& hullWhiteModel,
Real rho_xr, Time term, Real strike, Size j);
std::complex<Real> operator()(Real u) const;
private:
Real c(Time t) const;
Real lambda(Time t) const;
Real Lambda(Time t) const;
Real LambdaApprox(Time t) const;
const Size j_;
const Real lambda_, eta_;
const Real v0_, kappa_, theta_, gamma_;
const Real d_;
const Real rhoSr_;
const Time term_;
};
AnalyticH1HWEngine::Fj_Helper::Fj_Helper(
const Handle<HestonModel>& hestonModel,
const boost::shared_ptr<HullWhite>& hullWhiteModel,
Real rhoSr, Time term, Real, Size j)
: j_ (j),
lambda_(hullWhiteModel->a()),
eta_ (hullWhiteModel->sigma()),
v0_ (hestonModel->v0()),
kappa_ (hestonModel->kappa()),
theta_ (hestonModel->theta()),
gamma_ (hestonModel->sigma()),
d_ (4.0*kappa_*theta_/(gamma_*gamma_)),
rhoSr_ (rhoSr),
term_ (term) {
}
Real AnalyticH1HWEngine::Fj_Helper::c(Time t) const {
return gamma_*gamma_/(4*kappa_)*(1.0-std::exp(-kappa_*t));
}
Real AnalyticH1HWEngine::Fj_Helper::lambda(Time t) const {
return 4.0*kappa_*v0_*std::exp(-kappa_*t)
/(gamma_*gamma_*(1.0-std::exp(-kappa_*t)));
}
Real AnalyticH1HWEngine::Fj_Helper::LambdaApprox(Time t) const {
return std::sqrt( c(t)*(lambda(t)-1.0)
+ c(t)*d_*(1.0 + 1.0/(2.0*(d_+lambda(t)))));
}
Real AnalyticH1HWEngine::Fj_Helper::Lambda(Time t) const {
const GammaFunction g = GammaFunction();
const Size maxIter = 1000;
const Real lambdaT = lambda(t);
Size i=0;
Real retVal = 0.0, s;
do {
Real k = static_cast<Real>(i);
s=std::exp(k*std::log(0.5*lambdaT) + g.logValue(0.5*(1+d_)+k)
- g.logValue(k+1) - g.logValue(0.5*d_+k));
retVal += s;
} while (s > std::numeric_limits<float>::epsilon() && ++i < maxIter);
QL_REQUIRE(i < maxIter, "can not calculate Lambda");
retVal *= std::sqrt(2*c(t)) * std::exp(-0.5*lambdaT);
return retVal;
}
std::complex<Real> AnalyticH1HWEngine::Fj_Helper::operator()(Real u) const {
const Real gamma2 = gamma_*gamma_;
Real a, b, c;
if (8.0*kappa_*theta_/gamma2 > 1.0) {
a = std::sqrt(theta_-gamma2/(8.0*kappa_));
b = std::sqrt(v0_) - a;
c =-std::log((LambdaApprox(1.0)-a)/b);
}
else {
a = std::sqrt(gamma2/(2.0*kappa_))
*std::exp( GammaFunction().logValue(0.5*(d_+1.0))
- GammaFunction().logValue(0.5*d_));
const Time t1 = 0.0;
const Time t2 = 1.0/kappa_;
const Real Lambda_t1 = std::sqrt(v0_);
const Real Lambda_t2 = Lambda(t2);
c = std::log((Lambda_t2-a)/(Lambda_t1-a))/(t1-t2);
b = std::exp(c*t1)*(Lambda_t1-a);
}
const std::complex<Real> I4 =
-1.0/lambda_* std::complex<Real>(u*u, ((j_ == 1u)? -u : u))
*( b/c*(1.0 - std::exp(-c*term_))
+ a*term_
+ a/lambda_*(std::exp(-lambda_*term_) - 1.0)
+ b/(c-lambda_)*std::exp(-c*term_)
*(1.0 - std::exp(-term_*(lambda_-c))) );
return eta_*rhoSr_*I4;
}
AnalyticH1HWEngine::AnalyticH1HWEngine(
const boost::shared_ptr<HestonModel>& model,
const boost::shared_ptr<HullWhite>& hullWhiteModel,
Real rhoSr, Size integrationOrder)
: AnalyticHestonHullWhiteEngine(model, hullWhiteModel, integrationOrder),
rhoSr_(rhoSr) {
QL_REQUIRE(rhoSr_ >= 0.0, "Fourier integration is not stable if "
"the equity interest rate correlation is negative");
}
AnalyticH1HWEngine::AnalyticH1HWEngine(
const boost::shared_ptr<HestonModel>& model,
const boost::shared_ptr<HullWhite>& hullWhiteModel,
Real rhoSr, Real relTolerance, Size maxEvaluations)
: AnalyticHestonHullWhiteEngine(model, hullWhiteModel,
relTolerance, maxEvaluations),
rhoSr_(rhoSr) {
}
std::complex<Real> AnalyticH1HWEngine::addOnTerm(Real u, Time t, Size j)
const {
return AnalyticHestonHullWhiteEngine::addOnTerm(u, t, j)
+ Fj_Helper(model_, hullWhiteModel_, rhoSr_, t, 0.0, j)(u);
}
}
|