1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2004, 2005, 2008 Klaus Spanderen
Copyright (C) 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file hestonmodel.hpp
\brief analytic pricing engine for a heston option
based on fourier transformation
*/
#include <ql/math/functional.hpp>
#include <ql/math/integrals/simpsonintegral.hpp>
#include <ql/math/integrals/kronrodintegral.hpp>
#include <ql/math/integrals/trapezoidintegral.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>
#include <ql/instruments/payoffs.hpp>
#include <ql/pricingengines/vanilla/analytichestonengine.hpp>
#if defined(QL_PATCH_MSVC)
#pragma warning(disable: 4180)
#endif
#include <boost/lambda/if.hpp>
#include <boost/lambda/bind.hpp>
#include <boost/lambda/lambda.hpp>
using namespace boost::lambda;
namespace QuantLib {
// helper class for integration
class AnalyticHestonEngine::Fj_Helper
: public std::unary_function<Real, Real>
{
public:
Fj_Helper(const VanillaOption::arguments& arguments,
const boost::shared_ptr<HestonModel>& model,
const AnalyticHestonEngine* const engine,
ComplexLogFormula cpxLog,
Time term, Real ratio, Size j);
Fj_Helper(Real kappa, Real theta, Real sigma,
Real v0, Real s0, Real rho,
const AnalyticHestonEngine* const engine,
ComplexLogFormula cpxLog,
Time term,
Real strike,
Real ratio,
Size j);
Fj_Helper(Real kappa, Real theta, Real sigma,
Real v0, Real s0, Real rho,
ComplexLogFormula cpxLog,
Time term,
Real strike,
Real ratio,
Size j);
Real operator()(Real phi) const;
private:
const Size j_;
// const VanillaOption::arguments& arg_;
const Real kappa_, theta_, sigma_, v0_;
const ComplexLogFormula cpxLog_;
// helper variables
const Time term_;
const Real x_, sx_, dd_;
const Real sigma2_, rsigma_;
const Real t0_;
// log branch counter
mutable int b_; // log branch counter
mutable Real g_km1_; // imag part of last log value
const AnalyticHestonEngine* const engine_;
};
AnalyticHestonEngine::Fj_Helper::Fj_Helper(
const VanillaOption::arguments& arguments,
const boost::shared_ptr<HestonModel>& model,
const AnalyticHestonEngine* const engine,
ComplexLogFormula cpxLog,
Time term, Real ratio, Size j)
: j_ (j), //arg_(arguments),
kappa_(model->kappa()), theta_(model->theta()),
sigma_(model->sigma()), v0_(model->v0()),
cpxLog_(cpxLog), term_(term),
x_(std::log(model->process()->s0()->value())),
sx_(std::log(boost::dynamic_pointer_cast<StrikedTypePayoff>
(arguments.payoff)->strike())),
dd_(x_-std::log(ratio)),
sigma2_(sigma_*sigma_),
rsigma_(model->rho()*sigma_),
t0_(kappa_ - ((j_== 1)? model->rho()*sigma_ : 0)),
b_(0), g_km1_(0),
engine_(engine)
{
}
AnalyticHestonEngine::Fj_Helper::Fj_Helper(Real kappa, Real theta,
Real sigma, Real v0, Real s0, Real rho,
const AnalyticHestonEngine* const engine,
ComplexLogFormula cpxLog,
Time term,
Real strike,
Real ratio,
Size j)
:
j_(j),
kappa_(kappa),
theta_(theta),
sigma_(sigma),
v0_(v0),
cpxLog_(cpxLog),
term_(term),
x_(std::log(s0)),
sx_(std::log(strike)),
dd_(x_-std::log(ratio)),
sigma2_(sigma_*sigma_),
rsigma_(rho*sigma_),
t0_(kappa - ((j== 1)? rho*sigma : 0)),
b_(0),
g_km1_(0),
engine_(engine)
{
}
AnalyticHestonEngine::Fj_Helper::Fj_Helper(Real kappa, Real theta,
Real sigma, Real v0, Real s0, Real rho,
ComplexLogFormula cpxLog,
Time term,
Real strike,
Real ratio,
Size j)
:
j_(j),
kappa_(kappa),
theta_(theta),
sigma_(sigma),
v0_(v0),
cpxLog_(cpxLog),
term_(term),
x_(std::log(s0)),
sx_(std::log(strike)),
dd_(x_-std::log(ratio)),
sigma2_(sigma_*sigma_),
rsigma_(rho*sigma_),
t0_(kappa - ((j== 1)? rho*sigma : 0)),
b_(0),
g_km1_(0),
engine_(0)
{
}
Real AnalyticHestonEngine::Fj_Helper::operator()(Real phi) const
{
const Real rpsig(rsigma_*phi);
const std::complex<Real> t1 = t0_+std::complex<Real>(0, -rpsig);
const std::complex<Real> d =
std::sqrt(t1*t1 - sigma2_*phi
*std::complex<Real>(-phi, (j_== 1)? 1 : -1));
const std::complex<Real> ex = std::exp(-d*term_);
const std::complex<Real> addOnTerm
= engine_ > 0 ? engine_->addOnTerm(phi, term_, j_) : 0.0;
if (cpxLog_ == Gatheral) {
if (phi != 0.0) {
if (sigma_ > 1e-5) {
const std::complex<Real> p = (t1-d)/(t1+d);
const std::complex<Real> g
= std::log((1.0 - p*ex)/(1.0 - p));
return
std::exp(v0_*(t1-d)*(1.0-ex)/(sigma2_*(1.0-ex*p))
+ (kappa_*theta_)/sigma2_*((t1-d)*term_-2.0*g)
+ std::complex<Real>(0.0, phi*(dd_-sx_))
+ addOnTerm
).imag()/phi;
}
else {
const std::complex<Real> td = phi/(2.0*t1)
*std::complex<Real>(-phi, (j_== 1)? 1 : -1);
const std::complex<Real> p = td*sigma2_/(t1+d);
const std::complex<Real> g = p*(1.0-ex);
return
std::exp(v0_*td*(1.0-ex)/(1.0-p*ex)
+ (kappa_*theta_)*(td*term_-2.0*g/sigma2_)
+ std::complex<Real>(0.0, phi*(dd_-sx_))
+ addOnTerm
).imag()/phi;
}
}
else {
// use l'Hospital's rule to get lim_{phi->0}
if (j_ == 1) {
const Real kmr = rsigma_-kappa_;
if (std::fabs(kmr) > 1e-7) {
return dd_-sx_
+ (std::exp(kmr*term_)*kappa_*theta_
-kappa_*theta_*(kmr*term_+1.0) ) / (2*kmr*kmr)
- v0_*(1.0-std::exp(kmr*term_)) / (2.0*kmr);
}
else
// \kappa = \rho * \sigma
return dd_-sx_ + 0.25*kappa_*theta_*term_*term_
+ 0.5*v0_*term_;
}
else {
return dd_-sx_
- (std::exp(-kappa_*term_)*kappa_*theta_
+kappa_*theta_*(kappa_*term_-1.0))/(2*kappa_*kappa_)
- v0_*(1.0-std::exp(-kappa_*term_))/(2*kappa_);
}
}
}
else if (cpxLog_ == BranchCorrection) {
const std::complex<Real> p = (t1+d)/(t1 - d);
// next term: g = std::log((1.0 - p*std::exp(d*term_))/(1.0 - p))
std::complex<Real> g;
// the exp of the following expression is needed.
const std::complex<Real> e = std::log(p)+d*term_;
// does it fit to the machine precision?
if (std::exp(-e.real()) > QL_EPSILON) {
g = std::log((1.0 - p/ex)/(1.0 - p));
} else {
// use a "big phi" approximation
g = d*term_ + std::log(p/(p - 1.0));
if (g.imag() > M_PI || g.imag() <= -M_PI) {
// get back to principal branch of the complex logarithm
Real im = std::fmod(g.imag(), 2*M_PI);
if (im > M_PI)
im -= 2*M_PI;
else if (im <= -M_PI)
im += 2*M_PI;
g = std::complex<Real>(g.real(), im);
}
}
// be careful here as we have to use a log branch correction
// to deal with the discontinuities of the complex logarithm.
// the principal branch is not always the correct one.
// (s. A. Sepp, chapter 4)
// remark: there is still the change that we miss a branch
// if the order of the integration is not high enough.
const Real tmp = g.imag() - g_km1_;
if (tmp <= -M_PI)
++b_;
else if (tmp > M_PI)
--b_;
g_km1_ = g.imag();
g += std::complex<Real>(0, 2*b_*M_PI);
return std::exp(v0_*(t1+d)*(ex-1.0)/(sigma2_*(ex-p))
+ (kappa_*theta_)/sigma2_*((t1+d)*term_-2.0*g)
+ std::complex<Real>(0,phi*(dd_-sx_))
+ addOnTerm
).imag()/phi;
}
else {
QL_FAIL("unknown complex logarithm formula");
}
}
AnalyticHestonEngine::AnalyticHestonEngine(
const boost::shared_ptr<HestonModel>& model,
Size integrationOrder)
: GenericModelEngine<HestonModel,
VanillaOption::arguments,
VanillaOption::results>(model),
cpxLog_ (Gatheral),
integration_(new Integration(
Integration::gaussLaguerre(integrationOrder))) {
}
AnalyticHestonEngine::AnalyticHestonEngine(
const boost::shared_ptr<HestonModel>& model,
Real relTolerance, Size maxEvaluations)
: GenericModelEngine<HestonModel,
VanillaOption::arguments,
VanillaOption::results>(model),
cpxLog_(Gatheral),
integration_(new Integration(Integration::gaussLobatto(
relTolerance, Null<Real>(), maxEvaluations))) {
}
AnalyticHestonEngine::AnalyticHestonEngine(
const boost::shared_ptr<HestonModel>& model,
ComplexLogFormula cpxLog,
const Integration& integration)
: GenericModelEngine<HestonModel,
VanillaOption::arguments,
VanillaOption::results>(model),
cpxLog_(cpxLog),
integration_(new Integration(integration)) {
QL_REQUIRE( cpxLog_ != BranchCorrection
|| !integration.isAdaptiveIntegration(),
"Branch correction does not work in conjunction "
"with adaptive integration methods");
}
Size AnalyticHestonEngine::numberOfEvaluations() const {
return evaluations_;
}
void AnalyticHestonEngine::doCalculation(Real riskFreeDiscount,
Real dividendDiscount,
Real spotPrice,
Real strikePrice,
Real term,
Real kappa, Real theta, Real sigma, Real v0, Real rho,
const TypePayoff& type,
const Integration& integration,
const ComplexLogFormula cpxLog,
const AnalyticHestonEngine* const enginePtr,
Real& value,
Size& evaluations)
{
const Real ratio = riskFreeDiscount/dividendDiscount;
const Real c_inf = std::min(10.0, std::max(0.0001,
std::sqrt(1.0-square<Real>()(rho))/sigma))
*(v0 + kappa*theta*term);
evaluations = 0;
const Real p1 = integration.calculate(c_inf,
Fj_Helper(kappa, theta, sigma, v0, spotPrice, rho, enginePtr,
cpxLog, term, strikePrice, ratio, 1))/M_PI;
evaluations+= integration.numberOfEvaluations();
const Real p2 = integration.calculate(c_inf,
Fj_Helper(kappa, theta, sigma, v0, spotPrice, rho, enginePtr,
cpxLog, term, strikePrice, ratio, 2))/M_PI;
evaluations+= integration.numberOfEvaluations();
switch (type.optionType())
{
case Option::Call:
value = spotPrice*dividendDiscount*(p1+0.5)
- strikePrice*riskFreeDiscount*(p2+0.5);
break;
case Option::Put:
value = spotPrice*dividendDiscount*(p1-0.5)
- strikePrice*riskFreeDiscount*(p2-0.5);
break;
default:
QL_FAIL("unknown option type");
}
}
void AnalyticHestonEngine::calculate() const
{
// this is a european option pricer
QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
"not an European option");
// plain vanilla
boost::shared_ptr<PlainVanillaPayoff> payoff =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non plain vanilla payoff given");
const boost::shared_ptr<HestonProcess>& process = model_->process();
const Real riskFreeDiscount = process->riskFreeRate()->discount(
arguments_.exercise->lastDate());
const Real dividendDiscount = process->dividendYield()->discount(
arguments_.exercise->lastDate());
const Real spotPrice = process->s0()->value();
QL_REQUIRE(spotPrice > 0.0, "negative or null underlying given");
const Real strikePrice = payoff->strike();
const Real term = process->time(arguments_.exercise->lastDate());
doCalculation(riskFreeDiscount,
dividendDiscount,
spotPrice,
strikePrice,
term,
model_->kappa(),
model_->theta(),
model_->sigma(),
model_->v0(),
model_->rho(),
*payoff,
*integration_,
cpxLog_,
this,
results_.value,
evaluations_);
}
AnalyticHestonEngine::Integration::Integration(
Algorithm intAlgo,
const boost::shared_ptr<Integrator>& integrator)
: intAlgo_(intAlgo),
integrator_(integrator) { }
AnalyticHestonEngine::Integration::Integration(
Algorithm intAlgo,
const boost::shared_ptr<GaussianQuadrature>& gaussianQuadrature)
: intAlgo_(intAlgo),
gaussianQuadrature_(gaussianQuadrature) { }
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussLobatto(Real relTolerance,
Real absTolerance,
Size maxEvaluations) {
return Integration(GaussLobatto,
boost::shared_ptr<Integrator>(
new GaussLobattoIntegral(maxEvaluations,
absTolerance,
relTolerance,
false)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussKronrod(Real absTolerance,
Size maxEvaluations) {
return Integration(GaussKronrod,
boost::shared_ptr<Integrator>(
new GaussKronrodAdaptive(absTolerance,
maxEvaluations)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::simpson(Real absTolerance,
Size maxEvaluations) {
return Integration(Simpson,
boost::shared_ptr<Integrator>(
new SimpsonIntegral(absTolerance,
maxEvaluations)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::trapezoid(Real absTolerance,
Size maxEvaluations) {
return Integration(Trapezoid,
boost::shared_ptr<Integrator>(
new TrapezoidIntegral<Default>(absTolerance,
maxEvaluations)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussLaguerre(Size intOrder) {
QL_REQUIRE(intOrder <= 192, "maximum integraton order (192) exceeded");
return Integration(GaussLaguerre,
boost::shared_ptr<GaussianQuadrature>(
new GaussLaguerreIntegration(intOrder)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussLegendre(Size intOrder) {
return Integration(GaussLegendre,
boost::shared_ptr<GaussianQuadrature>(
new GaussLegendreIntegration(intOrder)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussChebyshev(Size intOrder) {
return Integration(GaussChebyshev,
boost::shared_ptr<GaussianQuadrature>(
new GaussChebyshevIntegration(intOrder)));
}
AnalyticHestonEngine::Integration
AnalyticHestonEngine::Integration::gaussChebyshev2nd(Size intOrder) {
return Integration(GaussChebyshev2nd,
boost::shared_ptr<GaussianQuadrature>(
new GaussChebyshev2ndIntegration(intOrder)));
}
Size AnalyticHestonEngine::Integration::numberOfEvaluations() const {
if (integrator_) {
return integrator_->numberOfEvaluations();
}
else if (gaussianQuadrature_) {
return gaussianQuadrature_->order();
}
else {
QL_FAIL("neither Integrator nor GaussianQuadrature given");
}
}
bool AnalyticHestonEngine::Integration::isAdaptiveIntegration() const {
return intAlgo_ == GaussLobatto
|| intAlgo_ == GaussKronrod
|| intAlgo_ == Simpson
|| intAlgo_ == Trapezoid;
}
Real AnalyticHestonEngine::Integration::calculate(
Real c_inf,
const boost::function1<Real, Real>& f) const {
Real retVal;
switch(intAlgo_) {
case GaussLaguerre:
retVal = gaussianQuadrature_->operator()(f);
break;
case GaussLegendre:
case GaussChebyshev:
case GaussChebyshev2nd:
retVal = gaussianQuadrature_->operator()(
boost::function1<Real, Real>(
if_then_else_return ( (boost::lambda::_1+1.0)*c_inf
> QL_EPSILON,
boost::lambda::bind(f, -boost::lambda::bind(
std::ptr_fun<Real,Real>(std::log),
0.5*boost::lambda::_1+0.5 )/c_inf )
/((boost::lambda::_1+1.0)*c_inf),
boost::lambda::bind(constant<Real, Real>(0.0),
boost::lambda::_1))));
break;
case Simpson:
case Trapezoid:
case GaussLobatto:
case GaussKronrod:
retVal = integrator_->operator()(
boost::function1<Real, Real>(
if_then_else_return ( boost::lambda::_1*c_inf > QL_EPSILON,
boost::lambda::bind(f,-boost::lambda::bind(
std::ptr_fun<Real,Real>(std::log),
boost::lambda::_1)/c_inf) /(boost::lambda::_1*c_inf),
boost::lambda::bind(constant<Real, Real>(0.0),
boost::lambda::_1))),
0.0, 1.0);
break;
default:
QL_FAIL("unknwon integration algorithm");
}
return retVal;
}
}
|