File: analytichestonengine.cpp

package info (click to toggle)
quantlib 1.4-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 34,340 kB
  • ctags: 64,765
  • sloc: cpp: 291,654; ansic: 21,484; sh: 11,209; makefile: 4,923; lisp: 86
file content (565 lines) | stat: -rw-r--r-- 21,780 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2004, 2005, 2008 Klaus Spanderen
 Copyright (C) 2007 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file hestonmodel.hpp
  \brief analytic pricing engine for a heston option
  based on fourier transformation
*/

#include <ql/math/functional.hpp>
#include <ql/math/integrals/simpsonintegral.hpp>
#include <ql/math/integrals/kronrodintegral.hpp>
#include <ql/math/integrals/trapezoidintegral.hpp>
#include <ql/math/integrals/gausslobattointegral.hpp>

#include <ql/instruments/payoffs.hpp>
#include <ql/pricingengines/vanilla/analytichestonengine.hpp>

#if defined(QL_PATCH_MSVC)
#pragma warning(disable: 4180)
#endif

#include <boost/lambda/if.hpp>
#include <boost/lambda/bind.hpp>
#include <boost/lambda/lambda.hpp>

using namespace boost::lambda;

namespace QuantLib {

    // helper class for integration
    class AnalyticHestonEngine::Fj_Helper
        : public std::unary_function<Real, Real>
    {
    public:
        Fj_Helper(const VanillaOption::arguments& arguments,
            const boost::shared_ptr<HestonModel>& model,
            const AnalyticHestonEngine* const engine,
            ComplexLogFormula cpxLog,
            Time term, Real ratio, Size j);

        Fj_Helper(Real kappa, Real theta, Real sigma,
            Real v0, Real s0, Real rho,
            const AnalyticHestonEngine* const engine,
            ComplexLogFormula cpxLog,
            Time term,
            Real strike,
            Real ratio,
            Size j);

         Fj_Helper(Real kappa, Real theta, Real sigma,
            Real v0, Real s0, Real rho,
            ComplexLogFormula cpxLog,
            Time term,
            Real strike,
            Real ratio,
            Size j);

        Real operator()(Real phi)      const;

    private:
        const Size j_;
        //     const VanillaOption::arguments& arg_;
        const Real kappa_, theta_, sigma_, v0_;
        const ComplexLogFormula cpxLog_;

        // helper variables
        const Time term_;
        const Real x_, sx_, dd_;
        const Real sigma2_, rsigma_;
        const Real t0_;

        // log branch counter
        mutable int  b_;     // log branch counter
        mutable Real g_km1_; // imag part of last log value

        const AnalyticHestonEngine* const engine_;
    };


    AnalyticHestonEngine::Fj_Helper::Fj_Helper(
        const VanillaOption::arguments& arguments,
        const boost::shared_ptr<HestonModel>& model,
        const AnalyticHestonEngine* const engine,
        ComplexLogFormula cpxLog,
        Time term, Real ratio, Size j)
        : j_ (j), //arg_(arguments),
        kappa_(model->kappa()), theta_(model->theta()),
        sigma_(model->sigma()), v0_(model->v0()),
        cpxLog_(cpxLog), term_(term),
        x_(std::log(model->process()->s0()->value())),
        sx_(std::log(boost::dynamic_pointer_cast<StrikedTypePayoff>
        (arguments.payoff)->strike())),
        dd_(x_-std::log(ratio)),
        sigma2_(sigma_*sigma_),
        rsigma_(model->rho()*sigma_),
        t0_(kappa_ - ((j_== 1)? model->rho()*sigma_ : 0)),
        b_(0), g_km1_(0),
        engine_(engine)
    {
    }

    AnalyticHestonEngine::Fj_Helper::Fj_Helper(Real kappa, Real theta,
        Real sigma, Real v0, Real s0, Real rho,
        const AnalyticHestonEngine* const engine,
        ComplexLogFormula cpxLog,
        Time term,
        Real strike,
        Real ratio,
        Size j)
        :
        j_(j),
        kappa_(kappa),
        theta_(theta),
        sigma_(sigma),
        v0_(v0),
        cpxLog_(cpxLog),
        term_(term),
        x_(std::log(s0)),
        sx_(std::log(strike)),
        dd_(x_-std::log(ratio)),
        sigma2_(sigma_*sigma_),
        rsigma_(rho*sigma_),
        t0_(kappa - ((j== 1)? rho*sigma : 0)),
        b_(0),
        g_km1_(0),
        engine_(engine)
    {
    }

    AnalyticHestonEngine::Fj_Helper::Fj_Helper(Real kappa, Real theta,
        Real sigma, Real v0, Real s0, Real rho,
        ComplexLogFormula cpxLog,
        Time term,
        Real strike,
        Real ratio,
        Size j)
        :
        j_(j),
        kappa_(kappa),
        theta_(theta),
        sigma_(sigma),
        v0_(v0),
        cpxLog_(cpxLog),
        term_(term),
        x_(std::log(s0)),
        sx_(std::log(strike)),
        dd_(x_-std::log(ratio)),
        sigma2_(sigma_*sigma_),
        rsigma_(rho*sigma_),
        t0_(kappa - ((j== 1)? rho*sigma : 0)),
        b_(0),
        g_km1_(0),
        engine_(0)
    {
    }


    Real AnalyticHestonEngine::Fj_Helper::operator()(Real phi) const
    {
        const Real rpsig(rsigma_*phi);

        const std::complex<Real> t1 = t0_+std::complex<Real>(0, -rpsig);
        const std::complex<Real> d =
            std::sqrt(t1*t1 - sigma2_*phi
                      *std::complex<Real>(-phi, (j_== 1)? 1 : -1));
        const std::complex<Real> ex = std::exp(-d*term_);
        const std::complex<Real> addOnTerm
            = engine_ > 0 ? engine_->addOnTerm(phi, term_, j_) : 0.0;

        if (cpxLog_ == Gatheral) {
            if (phi != 0.0) {
                if (sigma_ > 1e-5) {
                    const std::complex<Real> p = (t1-d)/(t1+d);
                    const std::complex<Real> g
                                            = std::log((1.0 - p*ex)/(1.0 - p));

                    return
                        std::exp(v0_*(t1-d)*(1.0-ex)/(sigma2_*(1.0-ex*p))
                                 + (kappa_*theta_)/sigma2_*((t1-d)*term_-2.0*g)
                                 + std::complex<Real>(0.0, phi*(dd_-sx_))
                                 + addOnTerm
                                 ).imag()/phi;
                }
                else {
                    const std::complex<Real> td = phi/(2.0*t1)
                                   *std::complex<Real>(-phi, (j_== 1)? 1 : -1);
                    const std::complex<Real> p = td*sigma2_/(t1+d);
                    const std::complex<Real> g = p*(1.0-ex);

                    return
                        std::exp(v0_*td*(1.0-ex)/(1.0-p*ex)
                                 + (kappa_*theta_)*(td*term_-2.0*g/sigma2_)
                                 + std::complex<Real>(0.0, phi*(dd_-sx_))
                                 + addOnTerm
                                 ).imag()/phi;
                }
            }
            else {
                // use l'Hospital's rule to get lim_{phi->0}
                if (j_ == 1) {
                    const Real kmr = rsigma_-kappa_;
                    if (std::fabs(kmr) > 1e-7) {
                        return dd_-sx_
                            + (std::exp(kmr*term_)*kappa_*theta_
                               -kappa_*theta_*(kmr*term_+1.0) ) / (2*kmr*kmr)
                            - v0_*(1.0-std::exp(kmr*term_)) / (2.0*kmr);
                    }
                    else
                        // \kappa = \rho * \sigma
                        return dd_-sx_ + 0.25*kappa_*theta_*term_*term_
                                       + 0.5*v0_*term_;
                }
                else {
                    return dd_-sx_
                        - (std::exp(-kappa_*term_)*kappa_*theta_
                           +kappa_*theta_*(kappa_*term_-1.0))/(2*kappa_*kappa_)
                        - v0_*(1.0-std::exp(-kappa_*term_))/(2*kappa_);
                }
            }
        }
        else if (cpxLog_ == BranchCorrection) {
            const std::complex<Real> p  = (t1+d)/(t1 - d);

            // next term: g = std::log((1.0 - p*std::exp(d*term_))/(1.0 - p))
            std::complex<Real> g;

            // the exp of the following expression is needed.
            const std::complex<Real> e = std::log(p)+d*term_;

            // does it fit to the machine precision?
            if (std::exp(-e.real()) > QL_EPSILON) {
                g = std::log((1.0 - p/ex)/(1.0 - p));
            } else {
                // use a "big phi" approximation
                g = d*term_ + std::log(p/(p - 1.0));

                if (g.imag() > M_PI || g.imag() <= -M_PI) {
                    // get back to principal branch of the complex logarithm
                    Real im = std::fmod(g.imag(), 2*M_PI);
                    if (im > M_PI)
                        im -= 2*M_PI;
                    else if (im <= -M_PI)
                        im += 2*M_PI;

                    g = std::complex<Real>(g.real(), im);
                }
            }

            // be careful here as we have to use a log branch correction
            // to deal with the discontinuities of the complex logarithm.
            // the principal branch is not always the correct one.
            // (s. A. Sepp, chapter 4)
            // remark: there is still the change that we miss a branch
            // if the order of the integration is not high enough.
            const Real tmp = g.imag() - g_km1_;
            if (tmp <= -M_PI)
                ++b_;
            else if (tmp > M_PI)
                --b_;

            g_km1_ = g.imag();
            g += std::complex<Real>(0, 2*b_*M_PI);

            return std::exp(v0_*(t1+d)*(ex-1.0)/(sigma2_*(ex-p))
                            + (kappa_*theta_)/sigma2_*((t1+d)*term_-2.0*g)
                            + std::complex<Real>(0,phi*(dd_-sx_))
                            + addOnTerm
                            ).imag()/phi;
        }
        else {
            QL_FAIL("unknown complex logarithm formula");
        }
    }

    AnalyticHestonEngine::AnalyticHestonEngine(
                              const boost::shared_ptr<HestonModel>& model,
                              Size integrationOrder)
    : GenericModelEngine<HestonModel,
                         VanillaOption::arguments,
                         VanillaOption::results>(model),
      cpxLog_     (Gatheral),
      integration_(new Integration(
                          Integration::gaussLaguerre(integrationOrder))) {
    }

    AnalyticHestonEngine::AnalyticHestonEngine(
                              const boost::shared_ptr<HestonModel>& model,
                              Real relTolerance, Size maxEvaluations)
    : GenericModelEngine<HestonModel,
                         VanillaOption::arguments,
                         VanillaOption::results>(model),
      cpxLog_(Gatheral),
      integration_(new Integration(Integration::gaussLobatto(
                              relTolerance, Null<Real>(), maxEvaluations))) {
    }

    AnalyticHestonEngine::AnalyticHestonEngine(
                              const boost::shared_ptr<HestonModel>& model,
                              ComplexLogFormula cpxLog,
                              const Integration& integration)
    : GenericModelEngine<HestonModel,
                         VanillaOption::arguments,
                         VanillaOption::results>(model),
      cpxLog_(cpxLog),
      integration_(new Integration(integration)) {
        QL_REQUIRE(   cpxLog_ != BranchCorrection
                   || !integration.isAdaptiveIntegration(),
                   "Branch correction does not work in conjunction "
                   "with adaptive integration methods");
    }

    Size AnalyticHestonEngine::numberOfEvaluations() const {
        return evaluations_;
    }

    void AnalyticHestonEngine::doCalculation(Real riskFreeDiscount,
                                             Real dividendDiscount,
                                             Real spotPrice,
                                             Real strikePrice,
                                             Real term,
                                             Real kappa, Real theta, Real sigma, Real v0, Real rho,
                                             const TypePayoff& type,
                                             const Integration& integration,
                                             const ComplexLogFormula cpxLog,
                                             const AnalyticHestonEngine* const enginePtr,
                                             Real& value,
                                             Size& evaluations)
    {

        const Real ratio = riskFreeDiscount/dividendDiscount;

        const Real c_inf = std::min(10.0, std::max(0.0001,
                std::sqrt(1.0-square<Real>()(rho))/sigma))
                *(v0 + kappa*theta*term);

        evaluations = 0;
        const Real p1 = integration.calculate(c_inf,
            Fj_Helper(kappa, theta, sigma, v0, spotPrice, rho, enginePtr,
                      cpxLog, term, strikePrice, ratio, 1))/M_PI;
        evaluations+= integration.numberOfEvaluations();

        const Real p2 = integration.calculate(c_inf,
            Fj_Helper(kappa, theta, sigma, v0, spotPrice, rho, enginePtr,
                      cpxLog, term, strikePrice, ratio, 2))/M_PI;
        evaluations+= integration.numberOfEvaluations();

        switch (type.optionType())
        {
          case Option::Call:
            value = spotPrice*dividendDiscount*(p1+0.5)
                           - strikePrice*riskFreeDiscount*(p2+0.5);
            break;
          case Option::Put:
            value = spotPrice*dividendDiscount*(p1-0.5)
                           - strikePrice*riskFreeDiscount*(p2-0.5);
            break;
          default:
            QL_FAIL("unknown option type");
        }

    }

    void AnalyticHestonEngine::calculate() const
    {
        // this is a european option pricer
        QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
                   "not an European option");

        // plain vanilla
        boost::shared_ptr<PlainVanillaPayoff> payoff =
            boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
        QL_REQUIRE(payoff, "non plain vanilla payoff given");

        const boost::shared_ptr<HestonProcess>& process = model_->process();

        const Real riskFreeDiscount = process->riskFreeRate()->discount(
                                            arguments_.exercise->lastDate());
        const Real dividendDiscount = process->dividendYield()->discount(
                                            arguments_.exercise->lastDate());

        const Real spotPrice = process->s0()->value();
        QL_REQUIRE(spotPrice > 0.0, "negative or null underlying given");

        const Real strikePrice = payoff->strike();
        const Real term = process->time(arguments_.exercise->lastDate());

        doCalculation(riskFreeDiscount,
                      dividendDiscount,
                      spotPrice,
                      strikePrice,
                      term,
                      model_->kappa(),
                      model_->theta(),
                      model_->sigma(),
                      model_->v0(),
                      model_->rho(),
                      *payoff,
                      *integration_,
                      cpxLog_,
                      this,
                      results_.value,
                      evaluations_);
    }


    AnalyticHestonEngine::Integration::Integration(
            Algorithm intAlgo,
            const boost::shared_ptr<Integrator>& integrator)
    : intAlgo_(intAlgo),
      integrator_(integrator) { }

    AnalyticHestonEngine::Integration::Integration(
            Algorithm intAlgo,
            const boost::shared_ptr<GaussianQuadrature>& gaussianQuadrature)
    : intAlgo_(intAlgo),
      gaussianQuadrature_(gaussianQuadrature) { }

    AnalyticHestonEngine::Integration
    AnalyticHestonEngine::Integration::gaussLobatto(Real relTolerance,
                                                    Real absTolerance,
                                                    Size maxEvaluations) {
        return Integration(GaussLobatto,
                           boost::shared_ptr<Integrator>(
                               new GaussLobattoIntegral(maxEvaluations,
                                                        absTolerance,
                                                        relTolerance,
                                                        false)));
    }

    AnalyticHestonEngine::Integration
    AnalyticHestonEngine::Integration::gaussKronrod(Real absTolerance,
                                                   Size maxEvaluations) {
        return Integration(GaussKronrod,
                           boost::shared_ptr<Integrator>(
                               new GaussKronrodAdaptive(absTolerance,
                                                        maxEvaluations)));
    }

    AnalyticHestonEngine::Integration
    AnalyticHestonEngine::Integration::simpson(Real absTolerance,
                                               Size maxEvaluations) {
        return Integration(Simpson,
                           boost::shared_ptr<Integrator>(
                               new SimpsonIntegral(absTolerance,
                                                   maxEvaluations)));
    }

    AnalyticHestonEngine::Integration
    AnalyticHestonEngine::Integration::trapezoid(Real absTolerance,
                                        Size maxEvaluations) {
        return Integration(Trapezoid,
                           boost::shared_ptr<Integrator>(
                              new TrapezoidIntegral<Default>(absTolerance,
                                                             maxEvaluations)));
    }

    AnalyticHestonEngine::Integration
    AnalyticHestonEngine::Integration::gaussLaguerre(Size intOrder) {
        QL_REQUIRE(intOrder <= 192, "maximum integraton order (192) exceeded");
        return Integration(GaussLaguerre,
                           boost::shared_ptr<GaussianQuadrature>(
                               new GaussLaguerreIntegration(intOrder)));
    }

    AnalyticHestonEngine::Integration
    AnalyticHestonEngine::Integration::gaussLegendre(Size intOrder) {
        return Integration(GaussLegendre,
                           boost::shared_ptr<GaussianQuadrature>(
                               new GaussLegendreIntegration(intOrder)));
    }

    AnalyticHestonEngine::Integration
    AnalyticHestonEngine::Integration::gaussChebyshev(Size intOrder) {
        return Integration(GaussChebyshev,
                           boost::shared_ptr<GaussianQuadrature>(
                               new GaussChebyshevIntegration(intOrder)));
    }

    AnalyticHestonEngine::Integration
    AnalyticHestonEngine::Integration::gaussChebyshev2nd(Size intOrder) {
        return Integration(GaussChebyshev2nd,
                           boost::shared_ptr<GaussianQuadrature>(
                               new GaussChebyshev2ndIntegration(intOrder)));
    }

    Size AnalyticHestonEngine::Integration::numberOfEvaluations() const {
        if (integrator_) {
            return integrator_->numberOfEvaluations();
        }
        else if (gaussianQuadrature_) {
            return gaussianQuadrature_->order();
        }
        else {
            QL_FAIL("neither Integrator nor GaussianQuadrature given");
        }
    }

    bool AnalyticHestonEngine::Integration::isAdaptiveIntegration() const {
        return intAlgo_ == GaussLobatto
            || intAlgo_ == GaussKronrod
            || intAlgo_ == Simpson
            || intAlgo_ == Trapezoid;
    }

    Real AnalyticHestonEngine::Integration::calculate(
                               Real c_inf,
                               const boost::function1<Real, Real>& f) const {
        Real retVal;

        switch(intAlgo_) {
          case GaussLaguerre:
            retVal = gaussianQuadrature_->operator()(f);
            break;
          case GaussLegendre:
          case GaussChebyshev:
          case GaussChebyshev2nd:
            retVal = gaussianQuadrature_->operator()(
                boost::function1<Real, Real>(
                    if_then_else_return ( (boost::lambda::_1+1.0)*c_inf 
                                          > QL_EPSILON,
                        boost::lambda::bind(f, -boost::lambda::bind(
                            std::ptr_fun<Real,Real>(std::log),
                            0.5*boost::lambda::_1+0.5 )/c_inf )
                                          /((boost::lambda::_1+1.0)*c_inf),
                        boost::lambda::bind(constant<Real, Real>(0.0), 
                                            boost::lambda::_1))));
            break;
          case Simpson:
          case Trapezoid:
          case GaussLobatto:
          case GaussKronrod:
            retVal = integrator_->operator()(
                boost::function1<Real, Real>(
                    if_then_else_return ( boost::lambda::_1*c_inf > QL_EPSILON,
                        boost::lambda::bind(f,-boost::lambda::bind(
                            std::ptr_fun<Real,Real>(std::log), 
                            boost::lambda::_1)/c_inf) /(boost::lambda::_1*c_inf),
                        boost::lambda::bind(constant<Real, Real>(0.0), 
                                            boost::lambda::_1))),
                0.0, 1.0);
            break;
          default:
              QL_FAIL("unknwon integration algorithm");
        }

        return retVal;
     }
}