1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2010 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file analyticptdhestonengine.cpp
\brief analytic piecewise time dependent Heston-model engine
*/
#include <ql/math/functional.hpp>
#include <ql/instruments/payoffs.hpp>
#include <ql/pricingengines/vanilla/analyticptdhestonengine.hpp>
namespace QuantLib {
// helper class for integration
class AnalyticPTDHestonEngine::Fj_Helper
: public std::unary_function<Real, Real> {
public:
Fj_Helper(
const Handle<PiecewiseTimeDependentHestonModel>& model,
Time term, Real strike, Size j);
Real operator()(Real phi) const;
private:
const Size j_;
const Time term_;
const Real v0_, x_, sx_;
std::vector<Rate> r_, q_;
const boost::shared_ptr<YieldTermStructure> qTS_;
const Handle<PiecewiseTimeDependentHestonModel> model_;
const TimeGrid timeGrid_;
};
AnalyticPTDHestonEngine::Fj_Helper::Fj_Helper(
const Handle<PiecewiseTimeDependentHestonModel>& model,
Time term, Real strike, Size j)
: j_(j),
term_(term),
v0_(model->v0()),
x_ (std::log(model->s0())),
sx_(std::log(strike)),
r_(model->timeGrid().size()-1),
q_(model->timeGrid().size()-1),
model_(model),
timeGrid_(model->timeGrid()){
for (Size i=0; i <timeGrid_.size()-1; ++i) {
const Time begin = std::min(term_, timeGrid_[i]);
const Time end = std::min(term_, timeGrid_[i+1]);
r_[i] = model->riskFreeRate()
->forwardRate(begin, end, Continuous, NoFrequency).rate();
q_[i] = model->dividendYield()
->forwardRate(begin, end, Continuous, NoFrequency).rate();
}
QL_REQUIRE(term_ < model_->timeGrid().back(), "maturity is too large");
}
Real AnalyticPTDHestonEngine::Fj_Helper::operator()(Real phi) const {
// avoid numeric overflow for phi->0.
// todo: use l'Hospital's rule use to get lim_{phi->0}
phi = std::max(Real(std::numeric_limits<float>::epsilon()), phi);
std::complex<Real> D = 0.0;
std::complex<Real> C = 0.0;
for (Size i=timeGrid_.size()-1; i > 0; --i) {
const Time begin = timeGrid_[i-1];
if (begin < term_) {
const Time end = std::min(term_, timeGrid_[i]);
const Time tau = end-begin;
const Time t = 0.5*(end+begin);
const Real rho = model_->rho(t);
const Real sigma = model_->sigma(t);
const Real kappa = model_->kappa(t);
const Real theta = model_->theta(t);
const Real sigma2 = sigma*sigma;
const Real t0 = kappa - ((j_== 1)? rho*sigma : 0);
const Real rpsig = rho*sigma*phi;
const std::complex<Real> t1 = t0+std::complex<Real>(0, -rpsig);
const std::complex<Real> d = std::sqrt(t1*t1 - sigma2*phi
*std::complex<Real>(-phi, (j_== 1)? 1 : -1));
const std::complex<Real> g = (t1-d)/(t1+d);
const std::complex<Real> gt
= (t1-d - D*sigma2)/(t1+d - D*sigma2);
D = (t1+d)/sigma2*(g-gt*std::exp(-d*tau))
/(1.0-gt*std::exp(-d*tau));
const std::complex<Real> lng
= std::log((1.0 - gt*std::exp(-d*tau))/(1.0 - gt));
C =(kappa*theta)/sigma2*((t1-d)*tau-2.0*lng)
+ std::complex<Real>(0.0, phi*(r_[i-1]-q_[i-1])*tau) + C;
}
}
return std::exp(v0_*D+C+std::complex<Real>(0.0, phi*(x_ - sx_))).imag()
/phi;
}
AnalyticPTDHestonEngine::AnalyticPTDHestonEngine(
const boost::shared_ptr<PiecewiseTimeDependentHestonModel>& model,
Size integrationOrder)
: GenericModelEngine<PiecewiseTimeDependentHestonModel,
VanillaOption::arguments,
VanillaOption::results>(model),
integration_(new AnalyticHestonEngine::Integration(
AnalyticHestonEngine::Integration::gaussLaguerre(integrationOrder))) {
}
AnalyticPTDHestonEngine::AnalyticPTDHestonEngine(
const boost::shared_ptr<PiecewiseTimeDependentHestonModel>& model,
Real relTolerance, Size maxEvaluations)
: GenericModelEngine<PiecewiseTimeDependentHestonModel,
VanillaOption::arguments,
VanillaOption::results>(model),
integration_(new AnalyticHestonEngine::Integration(
AnalyticHestonEngine::Integration::gaussLobatto(
relTolerance, Null<Real>(), maxEvaluations))) {
}
void AnalyticPTDHestonEngine::calculate() const {
// this is an european option pricer
QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
"not an European option");
// plain vanilla
boost::shared_ptr<PlainVanillaPayoff> payoff =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-striked payoff given");
const Real v0 = model_->v0();
const Real spotPrice = model_->s0();
QL_REQUIRE(spotPrice > 0.0, "negative or null underlying given");
const Real strike = payoff->strike();
const Real term
= model_->riskFreeRate()->dayCounter().yearFraction(
model_->riskFreeRate()->referenceDate(),
arguments_.exercise->lastDate());
const Real riskFreeDiscount = model_->riskFreeRate()->discount(
arguments_.exercise->lastDate());
const Real dividendDiscount = model_->dividendYield()->discount(
arguments_.exercise->lastDate());
//average values
const TimeGrid& timeGrid = model_->timeGrid();
const Size n = timeGrid.size()-1;
Real kappaAvg = 0.0, thetaAvg = 0.0, sigmaAvg=0.0, rhoAvg = 0.0;
for (Size i=1; i <= n; ++i) {
const Time t = 0.5*(timeGrid[i-1] + timeGrid[i]);
kappaAvg += model_->kappa(t);
thetaAvg += model_->theta(t);
sigmaAvg += model_->sigma(t);
rhoAvg += model_->rho(t);
}
kappaAvg/=n; thetaAvg/=n; sigmaAvg/=n; rhoAvg/=n;
const Real c_inf = std::min(10.0, std::max(0.0001,
std::sqrt(1.0-square<Real>()(rhoAvg))/sigmaAvg))
*(v0 + kappaAvg*thetaAvg*term);
const Real p1 = integration_->calculate(c_inf,
Fj_Helper(model_, term, strike, 1))/M_PI;
const Real p2 = integration_->calculate(c_inf,
Fj_Helper(model_, term, strike, 2))/M_PI;
switch (payoff->optionType())
{
case Option::Call:
results_.value = spotPrice*dividendDiscount*(p1+0.5)
- strike*riskFreeDiscount*(p2+0.5);
break;
case Option::Put:
results_.value = spotPrice*dividendDiscount*(p1-0.5)
- strike*riskFreeDiscount*(p2-0.5);
break;
default:
QL_FAIL("unknown option type");
}
}
}
|