1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/pricingengines/vanilla/fdhestonvanillaengine.hpp>
#include <ql/pricingengines/vanilla/analytichestonengine.hpp>
#include <ql/pricingengines/vanilla/fdhestonhullwhitevanillaengine.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <ql/methods/finitedifferences/meshers/uniform1dmesher.hpp>
#include <ql/methods/finitedifferences/meshers/fdmblackscholesmesher.hpp>
#include <ql/methods/finitedifferences/meshers/fdmblackscholesmultistrikemesher.hpp>
#include <ql/methods/finitedifferences/meshers/fdmsimpleprocess1dmesher.hpp>
#include <ql/methods/finitedifferences/meshers/fdmhestonvariancemesher.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
namespace QuantLib {
FdHestonHullWhiteVanillaEngine::FdHestonHullWhiteVanillaEngine(
const boost::shared_ptr<HestonModel>& hestonModel,
const boost::shared_ptr<HullWhiteProcess>& hwProcess,
Real corrEquityShortRate,
Size tGrid, Size xGrid,
Size vGrid, Size rGrid,
Size dampingSteps,
bool controlVariate,
const FdmSchemeDesc& schemeDesc)
: GenericModelEngine<HestonModel,
DividendVanillaOption::arguments,
DividendVanillaOption::results>(hestonModel),
hwProcess_(hwProcess),
corrEquityShortRate_(corrEquityShortRate),
tGrid_(tGrid), xGrid_(xGrid),
vGrid_(vGrid), rGrid_(rGrid),
dampingSteps_(dampingSteps),
schemeDesc_(schemeDesc),
controlVariate_(controlVariate) {
}
void FdHestonHullWhiteVanillaEngine::calculate() const {
// 1. cache lookup for precalculated results
for (Size i=0; i < cachedArgs2results_.size(); ++i) {
if ( cachedArgs2results_[i].first.exercise->type()
== arguments_.exercise->type()
&& cachedArgs2results_[i].first.exercise->dates()
== arguments_.exercise->dates()) {
boost::shared_ptr<PlainVanillaPayoff> p1 =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(
arguments_.payoff);
boost::shared_ptr<PlainVanillaPayoff> p2 =
boost::dynamic_pointer_cast<PlainVanillaPayoff>(
cachedArgs2results_[i].first.payoff);
if (p1 && p1->strike() == p2->strike()
&& p1->optionType() == p2->optionType()) {
QL_REQUIRE(arguments_.cashFlow.empty(),
"multiple strikes engine does "
"not work with discrete dividends");
results_ = cachedArgs2results_[i].second;
return;
}
}
}
// 2. Mesher
const boost::shared_ptr<HestonProcess> hestonProcess=model_->process();
const Time maturity=hestonProcess->time(arguments_.exercise->lastDate());
// 2.1 The variance mesher
const Size tGridMin = 5;
const boost::shared_ptr<FdmHestonVarianceMesher> varianceMesher(
new FdmHestonVarianceMesher(vGrid_, hestonProcess,
maturity,std::max(tGridMin,tGrid_/50)));
// 2.2 The equity mesher
const boost::shared_ptr<StrikedTypePayoff> payoff =
boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "wrong payoff type given");
boost::shared_ptr<Fdm1dMesher> equityMesher;
if (strikes_.empty()) {
equityMesher = boost::shared_ptr<Fdm1dMesher>(
new FdmBlackScholesMesher(
xGrid_,
FdmBlackScholesMesher::processHelper(
hestonProcess->s0(), hestonProcess->dividendYield(),
hestonProcess->riskFreeRate(),
varianceMesher->volaEstimate()),
maturity, payoff->strike(),
Null<Real>(), Null<Real>(), 0.0001, 1.5,
std::pair<Real, Real>(payoff->strike(), 0.1)));
}
else {
QL_REQUIRE(arguments_.cashFlow.empty(),"multiple strikes engine "
"does not work with discrete dividends");
equityMesher = boost::shared_ptr<Fdm1dMesher>(
new FdmBlackScholesMultiStrikeMesher(
xGrid_,
FdmBlackScholesMesher::processHelper(
hestonProcess->s0(), hestonProcess->dividendYield(),
hestonProcess->riskFreeRate(),
varianceMesher->volaEstimate()),
maturity, strikes_, 0.0001, 1.5,
std::pair<Real, Real>(payoff->strike(), 0.075)));
}
//2.3 The short rate mesher
const boost::shared_ptr<OrnsteinUhlenbeckProcess> ouProcess(
new OrnsteinUhlenbeckProcess(hwProcess_->a(),hwProcess_->sigma()));
const boost::shared_ptr<Fdm1dMesher> shortRateMesher(
new FdmSimpleProcess1dMesher(rGrid_, ouProcess, maturity));
const boost::shared_ptr<FdmMesher> mesher(
new FdmMesherComposite(equityMesher, varianceMesher,
shortRateMesher));
// 3. Calculator
const boost::shared_ptr<FdmInnerValueCalculator> calculator(
new FdmLogInnerValue(arguments_.payoff, mesher, 0));
// 4. Step conditions
const boost::shared_ptr<FdmStepConditionComposite> conditions =
FdmStepConditionComposite::vanillaComposite(
arguments_.cashFlow, arguments_.exercise,
mesher, calculator,
hestonProcess->riskFreeRate()->referenceDate(),
hestonProcess->riskFreeRate()->dayCounter());
// 5. Boundary conditions
const FdmBoundaryConditionSet boundaries;
// 6. Solver
const FdmSolverDesc solverDesc = { mesher, boundaries, conditions,
calculator, maturity,
tGrid_, dampingSteps_ };
const boost::shared_ptr<FdmHestonHullWhiteSolver> solver(
new FdmHestonHullWhiteSolver(Handle<HestonProcess>(hestonProcess),
Handle<HullWhiteProcess>(hwProcess_),
corrEquityShortRate_,
solverDesc, schemeDesc_));
const Real spot = hestonProcess->s0()->value();
const Real v0 = hestonProcess->v0();
results_.value = solver->valueAt(spot, v0, 0);
results_.delta = solver->deltaAt(spot, v0, 0, spot*0.01);
results_.gamma = solver->gammaAt(spot, v0, 0, spot*0.01);
results_.theta = solver->thetaAt(spot, v0, 0);
cachedArgs2results_.resize(strikes_.size());
for (Size i=0; i < strikes_.size(); ++i) {
cachedArgs2results_[i].first.exercise = arguments_.exercise;
cachedArgs2results_[i].first.payoff =
boost::shared_ptr<PlainVanillaPayoff>(
new PlainVanillaPayoff(payoff->optionType(), strikes_[i]));
const Real d = payoff->strike()/strikes_[i];
DividendVanillaOption::results&
results = cachedArgs2results_[i].second;
results.value = solver->valueAt(spot*d, v0, 0)/d;
results.delta = solver->deltaAt(spot*d, v0, 0, spot*d*0.01);
results.gamma = solver->gammaAt(spot*d, v0, 0, spot*d*0.01)*d;
results.theta = solver->thetaAt(spot*d, v0, 0)/d;
}
if (controlVariate_) {
boost::shared_ptr<PricingEngine> analyticEngine(
new AnalyticHestonEngine(*model_, 164));
boost::shared_ptr<Exercise> exercise(
new EuropeanExercise(arguments_.exercise->lastDate()));
VanillaOption option(payoff, exercise);
option.setPricingEngine(analyticEngine);
Real analyticNPV = option.NPV();
boost::shared_ptr<FdHestonVanillaEngine> fdEngine(
new FdHestonVanillaEngine(*model_, tGrid_, xGrid_,
vGrid_, dampingSteps_,
schemeDesc_));
fdEngine->enableMultipleStrikesCaching(strikes_);
option.setPricingEngine(fdEngine);
Real fdNPV = option.NPV();
results_.value += analyticNPV - fdNPV;
for (Size i=0; i < strikes_.size(); ++i) {
VanillaOption controlVariateOption(
boost::shared_ptr<StrikedTypePayoff>(
new PlainVanillaPayoff(payoff->optionType(),
strikes_[i])), exercise);
controlVariateOption.setPricingEngine(analyticEngine);
analyticNPV = controlVariateOption.NPV();
controlVariateOption.setPricingEngine(fdEngine);
fdNPV = controlVariateOption.NPV();
cachedArgs2results_[i].second.value += analyticNPV - fdNPV;
}
}
}
void FdHestonHullWhiteVanillaEngine::update() {
cachedArgs2results_.clear();
GenericModelEngine<HestonModel, DividendVanillaOption::arguments,
DividendVanillaOption::results>::update();
}
void FdHestonHullWhiteVanillaEngine::enableMultipleStrikesCaching(
const std::vector<Real>& strikes) {
strikes_ = strikes;
update();
}
}
|