1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2004 Ferdinando Ametrano
Copyright (C) 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/pricingengines/vanilla/jumpdiffusionengine.hpp>
#include <ql/pricingengines/vanilla/analyticeuropeanengine.hpp>
#include <ql/math/distributions/poissondistribution.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <ql/exercise.hpp>
namespace QuantLib {
JumpDiffusionEngine::JumpDiffusionEngine(
const boost::shared_ptr<Merton76Process>& process,
Real relativeAccuracy,
Size maxIterations)
: process_(process), relativeAccuracy_(relativeAccuracy),
maxIterations_(maxIterations) {
registerWith(process_);
}
void JumpDiffusionEngine::calculate() const {
Real jumpSquareVol = process_->logJumpVolatility()->value()
* process_->logJumpVolatility()->value();
Real muPlusHalfSquareVol = process_->logMeanJump()->value()
+ 0.5*jumpSquareVol;
// mean jump size
Real k = std::exp(muPlusHalfSquareVol) - 1.0;
Real lambda = (k+1.0) * process_->jumpIntensity()->value();
boost::shared_ptr<StrikedTypePayoff> payoff =
boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-striked payoff given");
Real variance =
process_->blackVolatility()->blackVariance(
arguments_.exercise->lastDate(),
payoff->strike());
DayCounter voldc = process_->blackVolatility()->dayCounter();
Calendar volcal = process_->blackVolatility()->calendar();
Date volRefDate = process_->blackVolatility()->referenceDate();
Time t = voldc.yearFraction(volRefDate,
arguments_.exercise->lastDate());
Rate riskFreeRate = -std::log(process_->riskFreeRate()->discount(
arguments_.exercise->lastDate()))/t;
Date rateRefDate = process_->riskFreeRate()->referenceDate();
PoissonDistribution p(lambda*t);
Handle<Quote> stateVariable = process_->stateVariable();
Handle<YieldTermStructure> dividendTS = process_->dividendYield();
RelinkableHandle<YieldTermStructure> riskFreeTS(
*process_->riskFreeRate());
RelinkableHandle<BlackVolTermStructure> volTS(
*process_->blackVolatility());
boost::shared_ptr<GeneralizedBlackScholesProcess> bsProcess(
new GeneralizedBlackScholesProcess(stateVariable, dividendTS,
riskFreeTS, volTS));
AnalyticEuropeanEngine baseEngine(bsProcess);
VanillaOption::arguments* baseArguments =
dynamic_cast<VanillaOption::arguments*>(baseEngine.getArguments());
baseArguments->payoff = arguments_.payoff;
baseArguments->exercise = arguments_.exercise;
baseArguments->validate();
const VanillaOption::results* baseResults =
dynamic_cast<const VanillaOption::results*>(
baseEngine.getResults());
results_.value = 0.0;
results_.delta = 0.0;
results_.gamma = 0.0;
results_.theta = 0.0;
results_.vega = 0.0;
results_.rho = 0.0;
results_.dividendRho = 0.0;
Real r, v, weight, lastContribution = 1.0;
Size i;
Real theta_correction;
// Haug arbitrary criterium is:
//for (i=0; i<11; i++) {
for (i=0; (lastContribution>relativeAccuracy_ && i<maxIterations_)
|| i < Size(lambda*t); i++) {
// constant vol/rate assumption. It should be relaxed
v = std::sqrt((variance + i*jumpSquareVol)/t);
r = riskFreeRate - process_->jumpIntensity()->value()*k
+ i*muPlusHalfSquareVol/t;
riskFreeTS.linkTo(boost::shared_ptr<YieldTermStructure>(new
FlatForward(rateRefDate, r, voldc)));
volTS.linkTo(boost::shared_ptr<BlackVolTermStructure>(new
BlackConstantVol(rateRefDate, volcal, v, voldc)));
baseArguments->validate();
baseEngine.calculate();
weight = p(Size(i));
results_.value += weight * baseResults->value;
results_.delta += weight * baseResults->delta;
results_.gamma += weight * baseResults->gamma;
results_.vega += weight * (std::sqrt(variance/t)/v)*
baseResults->vega;
// theta modified
theta_correction = baseResults->vega*((i*jumpSquareVol)/
(2.0*v*t*t)) +
baseResults->rho*i*muPlusHalfSquareVol/(t*t);
results_.theta += weight *(baseResults->theta + theta_correction +
lambda*baseResults->value);
if(i != 0){
results_.theta -= (p(Size(i-1))*lambda* baseResults->value);
}
//end theta calculation
results_.rho += weight * baseResults->rho;
results_.dividendRho += weight * baseResults->dividendRho;
lastContribution = std::fabs(baseResults->value /
(std::fabs(results_.value)>QL_EPSILON ? results_.value : 1.0));
lastContribution = std::max<Real>(lastContribution,
std::fabs(baseResults->delta /
(std::fabs(results_.delta)>QL_EPSILON ? results_.delta : 1.0)));
lastContribution = std::max<Real>(lastContribution,
std::fabs(baseResults->gamma /
(std::fabs(results_.gamma)>QL_EPSILON ? results_.gamma : 1.0)));
lastContribution = std::max<Real>(lastContribution,
std::fabs(baseResults->theta /
(std::fabs(results_.theta)>QL_EPSILON ? results_.theta : 1.0)));
lastContribution = std::max<Real>(lastContribution,
std::fabs(baseResults->vega /
(std::fabs(results_.vega)>QL_EPSILON ? results_.vega : 1.0)));
lastContribution = std::max<Real>(lastContribution,
std::fabs(baseResults->rho /
(std::fabs(results_.rho)>QL_EPSILON ? results_.rho : 1.0)));
lastContribution = std::max<Real>(lastContribution,
std::fabs(baseResults->dividendRho /
(std::fabs(results_.dividendRho)>QL_EPSILON ?
results_.dividendRho : 1.0)));
lastContribution *= weight;
}
QL_ENSURE(i<maxIterations_,
i << " iterations have been not enough to reach "
<< "the required " << relativeAccuracy_
<< " accuracy. The " << io::ordinal(i)
<< " addendum was " << lastContribution
<< " while the running sum was " << results_.value);
}
}
|