1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2004 Neil Firth
Copyright (C) 2007 StatPro Italia srl
Copyright (C) 2013 Fabien Le Floc'h
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/pricingengines/vanilla/juquadraticengine.hpp>
#include <ql/pricingengines/vanilla/baroneadesiwhaleyengine.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/exercise.hpp>
namespace QuantLib {
/* An Approximate Formula for Pricing American Options
Journal of Derivatives Winter 1999
Ju, N.
*/
JuQuadraticApproximationEngine::JuQuadraticApproximationEngine(
const boost::shared_ptr<GeneralizedBlackScholesProcess>& process)
: process_(process) {
registerWith(process_);
}
void JuQuadraticApproximationEngine::calculate() const {
QL_REQUIRE(arguments_.exercise->type() == Exercise::American,
"not an American Option");
boost::shared_ptr<AmericanExercise> ex =
boost::dynamic_pointer_cast<AmericanExercise>(arguments_.exercise);
QL_REQUIRE(ex, "non-American exercise given");
QL_REQUIRE(!ex->payoffAtExpiry(),
"payoff at expiry not handled");
boost::shared_ptr<StrikedTypePayoff> payoff =
boost::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-striked payoff given");
Real variance = process_->blackVolatility()->blackVariance(
ex->lastDate(), payoff->strike());
DiscountFactor dividendDiscount = process_->dividendYield()->discount(
ex->lastDate());
DiscountFactor riskFreeDiscount = process_->riskFreeRate()->discount(
ex->lastDate());
Real spot = process_->stateVariable()->value();
QL_REQUIRE(spot > 0.0, "negative or null underlying given");
Real forwardPrice = spot * dividendDiscount / riskFreeDiscount;
BlackCalculator black(payoff, forwardPrice,
std::sqrt(variance), riskFreeDiscount);
if (dividendDiscount>=1.0 && payoff->optionType()==Option::Call) {
// early exercise never optimal
results_.value = black.value();
results_.delta = black.delta(spot);
results_.deltaForward = black.deltaForward();
results_.elasticity = black.elasticity(spot);
results_.gamma = black.gamma(spot);
DayCounter rfdc = process_->riskFreeRate()->dayCounter();
DayCounter divdc = process_->dividendYield()->dayCounter();
DayCounter voldc = process_->blackVolatility()->dayCounter();
Time t =
rfdc.yearFraction(process_->riskFreeRate()->referenceDate(),
arguments_.exercise->lastDate());
results_.rho = black.rho(t);
t = divdc.yearFraction(process_->dividendYield()->referenceDate(),
arguments_.exercise->lastDate());
results_.dividendRho = black.dividendRho(t);
t = voldc.yearFraction(process_->blackVolatility()->referenceDate(),
arguments_.exercise->lastDate());
results_.vega = black.vega(t);
results_.theta = black.theta(spot, t);
results_.thetaPerDay = black.thetaPerDay(spot, t);
results_.strikeSensitivity = black.strikeSensitivity();
results_.itmCashProbability = black.itmCashProbability();
} else {
// early exercise can be optimal
CumulativeNormalDistribution cumNormalDist;
NormalDistribution normalDist;
Real tolerance = 1e-6;
Real Sk = BaroneAdesiWhaleyApproximationEngine::criticalPrice(
payoff, riskFreeDiscount, dividendDiscount, variance,
tolerance);
Real forwardSk = Sk * dividendDiscount / riskFreeDiscount;
Real alpha = -2.0*std::log(riskFreeDiscount)/(variance);
Real beta = 2.0*std::log(dividendDiscount/riskFreeDiscount)/
(variance);
Real h = 1 - riskFreeDiscount;
Real phi;
switch (payoff->optionType()) {
case Option::Call:
phi = 1;
break;
case Option::Put:
phi = -1;
break;
default:
QL_FAIL("unknown option type");
}
//it can throw: to be fixed
// FLOATING_POINT_EXCEPTION
Real temp_root = std::sqrt ((beta-1)*(beta-1) + (4*alpha)/h);
Real lambda = (-(beta-1) + phi * temp_root) / 2;
Real lambda_prime = - phi * alpha / (h*h * temp_root);
Real black_Sk = blackFormula(payoff->optionType(), payoff->strike(),
forwardSk, std::sqrt(variance)) * riskFreeDiscount;
Real hA = phi * (Sk - payoff->strike()) - black_Sk;
Real d1_Sk = (std::log(forwardSk/payoff->strike()) + 0.5*variance)
/std::sqrt(variance);
Real d2_Sk = d1_Sk - std::sqrt(variance);
Real part1 = forwardSk * normalDist(d1_Sk) /
(alpha * std::sqrt(variance));
Real part2 = - phi * forwardSk * cumNormalDist(phi * d1_Sk) *
std::log(dividendDiscount) / std::log(riskFreeDiscount);
Real part3 = + phi * payoff->strike() * cumNormalDist(phi * d2_Sk);
Real V_E_h = part1 + part2 + part3;
Real b = (1-h) * alpha * lambda_prime / (2*(2*lambda + beta - 1));
Real c = - ((1 - h) * alpha / (2 * lambda + beta - 1)) *
(V_E_h / (hA) + 1 / h + lambda_prime / (2*lambda + beta - 1));
Real temp_spot_ratio = std::log(spot / Sk);
Real chi = temp_spot_ratio * (b * temp_spot_ratio + c);
if (phi*(Sk-spot) > 0) {
results_.value = black.value() +
hA * std::pow((spot/Sk), lambda) / (1 - chi);
Real temp_chi_prime = (2 * b / spot) * std::log(spot/Sk);
Real chi_prime = temp_chi_prime + c / spot;
Real chi_double_prime = 2*b/(spot*spot)
- temp_chi_prime / spot - c / (spot*spot);
Real d1_S = (std::log(forwardPrice/payoff->strike()) + 0.5*variance)
/ std::sqrt(variance);
//There is a typo in the original paper from Ju-Zhong
//the first term is the Black-Scholes delta/gamma.
results_.delta = phi * dividendDiscount * cumNormalDist (phi * d1_S)
+ (lambda / (spot * (1 - chi)) + chi_prime / ((1 - chi)*(1 - chi))) *
(phi * (Sk - payoff->strike()) - black_Sk) * std::pow((spot/Sk), lambda);
results_.gamma = dividendDiscount * normalDist (phi*d1_S)
/ (spot * std::sqrt(variance))
+ (2 * lambda * chi_prime / (spot * (1 - chi) * (1 - chi))
+ 2 * chi_prime * chi_prime / ((1 - chi) * (1 - chi) * (1 - chi))
+ chi_double_prime / ((1 - chi) * (1 - chi))
+ lambda * (lambda - 1) / (spot * spot * (1 - chi)))
* (phi * (Sk - payoff->strike()) - black_Sk)
* std::pow((spot/Sk), lambda);
} else {
results_.value = phi * (spot - payoff->strike());
results_.delta = phi;
results_.gamma = 0;
}
} // end of "early exercise can be optimal"
}
}
|