File: abcd.cpp

package info (click to toggle)
quantlib 1.4-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 34,340 kB
  • ctags: 64,765
  • sloc: cpp: 291,654; ansic: 21,484; sh: 11,209; makefile: 4,923; lisp: 86
file content (133 lines) | stat: -rw-r--r-- 4,650 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006, 2007 Ferdinando Ametrano
 Copyright (C) 2006 Cristina Duminuco
 Copyright (C) 2005, 2006 Klaus Spanderen
 Copyright (C) 2007 Giorgio Facchinetti

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/termstructures/volatility/abcd.hpp>
#include <ql/math/comparison.hpp>

namespace QuantLib {

    AbcdFunction::AbcdFunction(Real a, Real b, Real c, Real d)
    : a_(a), b_(b), c_(c), d_(d) {
        validateAbcdParameters(a, b, c, d);
    }

    Real AbcdFunction::operator()(Time u) const {
        return u<0 ? 0.0 : (a_ + b_*u)*std::exp(-c_*u) + d_;
    }

    Real AbcdFunction::maximumLocation() const {
        if (b_<=0) {
            return 0.0;
        } else {
            if((b_-c_*a_)/(c_*b_)>0) {
                return (b_-c_*a_)/(c_*b_);
            } else
                return 0.0;
        }
    }

    Real AbcdFunction::maximumVolatility() const {
        if (b_<=0) {
            return shortTermVolatility();
        } else {
            if ((b_-c_*a_)/(c_*b_) > 0.0) {
                return b_/c_*std::exp(-1.0 +c_*a_/b_) + d_;
            } else
                return shortTermVolatility();
        }
    }

    Real AbcdFunction::volatility(Time tMin, Time tMax, Time T) const {
        if (tMax==tMin)
            return instantaneousVolatility(tMax, T);
        QL_REQUIRE(tMax>tMin, "tMax must be > tMin");
        return std::sqrt(variance(tMin, tMax, T)/(tMax-tMin));
    }

    Real AbcdFunction::variance(Time tMin, Time tMax, Time T) const {
        return covariance(tMin, tMax, T, T);
    }

    Real AbcdFunction::covariance(Time t, Time T, Time S) const {
        return (*this)(T-t) * (*this)(S-t);
    }

    Real AbcdFunction::covariance(Time t1, Time t2, Time T, Time S) const {
        QL_REQUIRE(t1<=t2,
                   "integrations bounds (" << t1 <<
                   "," << t2 << ") are in reverse order");
        Time cutOff = std::min(S,T);
        if (t1>=cutOff) {
            return 0.0;
        } else {
            cutOff = std::min(t2, cutOff);
            return primitive(cutOff, T, S) - primitive(t1, T, S);
        }
    }

    // INSTANTANEOUS
    Real AbcdFunction::instantaneousVolatility(Time u, Time T) const {
        return std::sqrt(instantaneousVariance(u, T));
    }

    Real AbcdFunction::instantaneousVariance(Time u, Time T) const {
        return instantaneousCovariance(u, T, T);
    }
    Real AbcdFunction::instantaneousCovariance(Time u, Time T, Time S) const {
        return (*this)(T-u)*(*this)(S-u);
    }

    // PRIMITIVE
    Real AbcdFunction::primitive(Time t, Time T, Time S) const {
        if (T<t || S<t) return 0.0;

        if (close(c_,0.0)) {
            Real v = a_+d_;
            return t*(v*v+v*b_*S+v*b_*T-v*b_*t+b_*b_*S*T-0.5*b_*b_*t*(S+T)+b_*b_*t*t/3.0);
        }

        Real k1=std::exp(c_*t), k2=std::exp(c_*S), k3=std::exp(c_*T);

        return (b_*b_*(-1 - 2*c_*c_*S*T - c_*(S + T)
                     + k1*k1*(1 + c_*(S + T - 2*t) + 2*c_*c_*(S - t)*(T - t)))
                + 2*c_*c_*(2*d_*a_*(k2 + k3)*(k1 - 1)
                         +a_*a_*(k1*k1 - 1)+2*c_*d_*d_*k2*k3*t)
                + 2*b_*c_*(a_*(-1 - c_*(S + T) + k1*k1*(1 + c_*(S + T - 2*t)))
                         -2*d_*(k3*(1 + c_*S) + k2*(1 + c_*T)
                               - k1*k3*(1 + c_*(S - t))
                               - k1*k2*(1 + c_*(T - t)))
                         )
                ) / (4*c_*c_*c_*k2*k3);
    }

//===========================================================================//
//                               AbcdSquared                                //
//===========================================================================//

    AbcdSquared::AbcdSquared(Real a, Real b, Real c, Real d, Time T, Time S)
    : abcd_(new AbcdFunction(a,b,c,d)),
      T_(T), S_(S) {}

    Real AbcdSquared::operator()(Time t) const {
        return abcd_->covariance(t, T_, S_);
    }
}