File: yieldtermstructure.cpp

package info (click to toggle)
quantlib 1.4-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 34,340 kB
  • ctags: 64,765
  • sloc: cpp: 291,654; ansic: 21,484; sh: 11,209; makefile: 4,923; lisp: 86
file content (210 lines) | stat: -rw-r--r-- 9,030 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2004, 2009 Ferdinando Ametrano
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
 Copyright (C) 2003, 2004, 2005, 2006 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/termstructures/yieldtermstructure.hpp>
#include <ql/utilities/dataformatters.hpp>

namespace QuantLib {

    namespace {
        // time interval used in finite differences
        const Time dt = 0.0001;
    }

    YieldTermStructure::YieldTermStructure(
                                    const DayCounter& dc,
                                    const std::vector<Handle<Quote> >& jumps,
                                    const std::vector<Date>& jumpDates)
    : TermStructure(dc), jumps_(jumps),
      jumpDates_(jumpDates), jumpTimes_(jumpDates.size()),
      nJumps_(jumps_.size()) {
        setJumps();
        for (Size i=0; i<nJumps_; ++i)
            registerWith(jumps_[i]);
    }

    YieldTermStructure::YieldTermStructure(
                                    const Date& referenceDate,
                                    const Calendar& cal,
                                    const DayCounter& dc,
                                    const std::vector<Handle<Quote> >& jumps,
                                    const std::vector<Date>& jumpDates)
    : TermStructure(referenceDate, cal, dc), jumps_(jumps),
      jumpDates_(jumpDates), jumpTimes_(jumpDates.size()),
      nJumps_(jumps_.size()) {
        setJumps();
        for (Size i=0; i<nJumps_; ++i)
            registerWith(jumps_[i]);
    }

    YieldTermStructure::YieldTermStructure(
                                    Natural settlementDays,
                                    const Calendar& cal,
                                    const DayCounter& dc,
                                    const std::vector<Handle<Quote> >& jumps,
                                    const std::vector<Date>& jumpDates)
    : TermStructure(settlementDays, cal, dc), jumps_(jumps),
      jumpDates_(jumpDates), jumpTimes_(jumpDates.size()),
      nJumps_(jumps_.size()) {
        setJumps();
        for (Size i=0; i<nJumps_; ++i)
            registerWith(jumps_[i]);
    }

    void YieldTermStructure::setJumps() {
        if (jumpDates_.empty() && !jumps_.empty()) { // turn of year dates
            jumpDates_.resize(nJumps_);
            jumpTimes_.resize(nJumps_);
            Year y = referenceDate().year();
            for (Size i=0; i<nJumps_; ++i)
                jumpDates_[i] = Date(31, December, y+i);
        } else { // fixed dats
            QL_REQUIRE(jumpDates_.size()==nJumps_,
                       "mismatch between number of jumps (" << nJumps_ <<
                       ") and jump dates (" << jumpDates_.size() << ")");
        }
        for (Size i=0; i<nJumps_; ++i)
            jumpTimes_[i] = timeFromReference(jumpDates_[i]);
        latestReference_ = referenceDate();
    }

    DiscountFactor YieldTermStructure::discount(Time t,
                                                bool extrapolate) const {
        checkRange(t, extrapolate);

        if (jumps_.empty())
            return discountImpl(t);

        DiscountFactor jumpEffect = 1.0;
        for (Size i=0; i<nJumps_; ++i) {
            if (jumpTimes_[i]>0 && jumpTimes_[i]<t) {
                QL_REQUIRE(jumps_[i]->isValid(),
                           "invalid " << io::ordinal(i+1) << " jump quote");
                DiscountFactor thisJump = jumps_[i]->value();
                QL_REQUIRE(thisJump>0.0 && thisJump<=1.0,
                           "invalid " << io::ordinal(i+1) << " jump value: " <<
                           thisJump);
                jumpEffect *= thisJump;
            }
        }
        return jumpEffect * discountImpl(t);

    }

    InterestRate YieldTermStructure::zeroRate(const Date& d,
                                              const DayCounter& dayCounter,
                                              Compounding comp,
                                              Frequency freq,
                                              bool extrapolate) const {
        if (d==referenceDate()) {
            Real compound = 1.0/discount(dt, extrapolate);
            // t has been calculated with a possibly different daycounter
            // but the difference should not matter for very small times
            return InterestRate::impliedRate(compound,
                                             dayCounter, comp, freq,
                                             dt);
        }
        Real compound = 1.0/discount(d, extrapolate);
        return InterestRate::impliedRate(compound,
                                         dayCounter, comp, freq,
                                         referenceDate(), d);
    }

    InterestRate YieldTermStructure::zeroRate(Time t,
                                              Compounding comp,
                                              Frequency freq,
                                              bool extrapolate) const {
        if (t==0.0) t = dt;
        Real compound = 1.0/discount(t, extrapolate);
        return InterestRate::impliedRate(compound,
                                         dayCounter(), comp, freq,
                                         t);
    }

    InterestRate YieldTermStructure::forwardRate(const Date& d1,
                                                 const Date& d2,
                                                 const DayCounter& dayCounter,
                                                 Compounding comp,
                                                 Frequency freq,
                                                 bool extrapolate) const {
        if (d1==d2) {
            checkRange(d1, extrapolate);
            Time t1 = std::max(timeFromReference(d1) - dt/2.0, 0.0);
            Time t2 = t1 + dt;
            Real compound =
                discount(t1, true)/discount(t2, true);
            // times have been calculated with a possibly different daycounter
            // but the difference should not matter for very small times
            return InterestRate::impliedRate(compound,
                                             dayCounter, comp, freq,
                                             dt);
        }
        QL_REQUIRE(d1 < d2,  d1 << " later than " << d2);
        Real compound = discount(d1, extrapolate)/discount(d2, extrapolate);
        return InterestRate::impliedRate(compound,
                                         dayCounter, comp, freq,
                                         d1, d2);
    }

    InterestRate YieldTermStructure::forwardRate(Time t1,
                                                 Time t2,
                                                 Compounding comp,
                                                 Frequency freq,
                                                 bool extrapolate) const {
        Real compound;
        if (t2==t1) {
            checkRange(t1, extrapolate);
            t1 = std::max(t1 - dt/2.0, 0.0);
            t2 = t1 + dt;
            compound = discount(t1, true)/discount(t2, true);
        } else {
            QL_REQUIRE(t2>t1, "t2 (" << t2 << ") < t1 (" << t2 << ")");
            compound = discount(t1, extrapolate)/discount(t2, extrapolate);
        }
        return InterestRate::impliedRate(compound,
                                         dayCounter(), comp, freq,
                                         t2-t1);
    }

    void YieldTermStructure::update() {
        TermStructure::update();
        Date newReference = Date();
        try {
            newReference = referenceDate();
            if (newReference != latestReference_)
                setJumps();
        } catch (Error&) {
            if (newReference == Date()) {
                // the curve couldn't calculate the reference
                // date. Most of the times, this is because some
                // underlying handle wasn't set, so we can just absorb
                // the exception and continue; the jumps will be set
                // correctly when a valid underlying is set.
                return;
            } else {
                // something else happened during the call to
                // setJumps(), so we let the exception bubble up.
                throw;
            }
        }
    }

}