File: convolvedstudentt.cpp

package info (click to toggle)
quantlib 1.40-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,768 kB
  • sloc: cpp: 398,987; makefile: 6,574; python: 214; sh: 150; lisp: 86
file content (179 lines) | stat: -rw-r--r-- 7,183 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2014 Jose Aparicio

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/experimental/math/convolvedstudentt.hpp>
#include <ql/errors.hpp>
#include <ql/math/factorial.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/functional.hpp>
#include <boost/math/distributions/students_t.hpp>

namespace QuantLib {

    CumulativeBehrensFisher::CumulativeBehrensFisher(const std::vector<Integer>& degreesFreedom,
                                                     const std::vector<Real>& factors)
    : degreesFreedom_(degreesFreedom), factors_(factors), polyConvolved_(std::vector<Real>(1, 1.))

    {
        QL_REQUIRE(degreesFreedom.size() == factors.size(),
            "Incompatible sizes in convolution.");
        for (int i : degreesFreedom) {
            QL_REQUIRE(i % 2 != 0, "Even degree of freedom not allowed");
            QL_REQUIRE(i >= 0, "Negative degree of freedom not allowed");
        }
        for(Size i=0; i<degreesFreedom_.size(); i++)
            polynCharFnc_.push_back(polynCharactT((degreesFreedom[i]-1)/2));
        // adjust the polynomial coefficients by the factors in the linear
        //   combination:
        for(Size i=0; i<degreesFreedom_.size(); i++) {
            Real multiplier = 1.;
            for(Size k=1; k<polynCharFnc_[i].size(); k++) {
                multiplier *= std::abs(factors_[i]);
                polynCharFnc_[i][k] *= multiplier;
            }
        }
        //convolution, here it is a product of polynomials and exponentials
        for (auto& i : polynCharFnc_)
            polyConvolved_ = convolveVectorPolynomials(polyConvolved_, i);
        // trim possible zeros that might have arised:
        auto it = polyConvolved_.rbegin();
        while (it != polyConvolved_.rend()) {
            if (*it == 0.) {
                polyConvolved_.pop_back();
                it = polyConvolved_.rbegin();
              }else{
                  break;
              }
          }
          // cache 'a' value (the exponent)
          for(Size i=0; i<degreesFreedom_.size(); i++)
              a_ += std::sqrt(static_cast<Real>(degreesFreedom_[i]))
                * std::abs(factors_[i]);
          a2_ = a_ * a_;
    }

    std::vector<Real> CumulativeBehrensFisher::polynCharactT(Natural n) const {
        Natural nu = 2 * n +1;
        std::vector<Real> low(1,1.), high(1,1.);
        high.push_back(std::sqrt(static_cast<Real>(nu)));
        if(n==0) return low;
        if(n==1) return high;

        for(Size k=1; k<n; k++) {
            std::vector<Real> recursionFactor(1,0.); // 0 coef
            recursionFactor.push_back(0.); // 1 coef
            recursionFactor.push_back(nu/((2.*k+1.)*(2.*k-1.))); // 2 coef
            std::vector<Real> lowUp =
                convolveVectorPolynomials(recursionFactor, low);
            //add them up:
            for(Size i=0; i<high.size(); i++)
                lowUp[i] += high[i];
            low = high;
            high = lowUp;
        }
        return high;
    }

    std::vector<Real> CumulativeBehrensFisher::convolveVectorPolynomials(
        const std::vector<Real>& v1,
        const std::vector<Real>& v2) const {
    #if defined(QL_EXTRA_SAFETY_CHECKS)
        QL_REQUIRE(!v1.empty() && !v2.empty(),
            "Incorrect vectors in polynomial.");
    #endif

        const std::vector<Real>& shorter = v1.size() < v2.size() ? v1 : v2;
        const std::vector<Real>& longer = (v1 == shorter) ? v2 : v1;

        Size newDegree = v1.size()+v2.size()-2;
        std::vector<Real> resultB(newDegree+1, 0.);
        for(Size polyOrdr=0; polyOrdr<resultB.size(); polyOrdr++) {
            for(Size i=std::max<Integer>(0, polyOrdr-longer.size()+1);
                i<=std::min(polyOrdr, shorter.size()-1); i++)
                resultB[polyOrdr] += shorter[i]*longer[polyOrdr-i];
        }
        return resultB;
    }

    Probability CumulativeBehrensFisher::operator()(const Real x) const {
        // 1st & 0th terms with the table integration
        Real integral = polyConvolved_[0] * std::atan(x/a_);
        Real squared = a2_ + x*x;
        Real rootsqr = std::sqrt(squared);
        Real atan2xa = std::atan2(-x,a_);
        if(polyConvolved_.size()>1)
            integral += polyConvolved_[1] * x/squared;

        for(Size exponent = 2; exponent <polyConvolved_.size(); exponent++) {
            integral -= polyConvolved_[exponent] *
                Factorial::get(exponent-1) * std::sin((exponent)*atan2xa)
                    /std::pow(rootsqr, static_cast<Real>(exponent));
         }
        return .5 + integral / M_PI;
    }

    Probability
    CumulativeBehrensFisher::density(const Real x) const {
        Real squared = a2_ + x*x;
        Real integral = polyConvolved_[0] * a_ / squared;
        Real rootsqr = std::sqrt(squared);
        Real atan2xa = std::atan2(-x,a_);
        for(Size exponent=1; exponent <polyConvolved_.size(); exponent++) {
            integral += polyConvolved_[exponent] *
                Factorial::get(exponent) * std::cos((exponent+1)*atan2xa)
                    /std::pow(rootsqr, static_cast<Real>(exponent+1) );
        }
        return integral / M_PI;
    }



    InverseCumulativeBehrensFisher::InverseCumulativeBehrensFisher(
        const std::vector<Integer>& degreesFreedom,
        const std::vector<Real>& factors,
        Real accuracy)
    : normSqr_(std::inner_product(factors.begin(), factors.end(),
        factors.begin(), Real(0.))),
      accuracy_(accuracy), distrib_(degreesFreedom, factors) { }

    Real InverseCumulativeBehrensFisher::operator()(const Probability q) const {
        Probability effectiveq;
        Real sign;
        // since the distrib is symmetric solve only on the right side:
        if(q==0.5) {
            return 0.;
        }else if(q < 0.5) {
            sign = -1.;
            effectiveq = 1.-q;
        }else{
            sign = 1.;
            effectiveq = q;
        }
        Real xMin =
            InverseCumulativeNormal::standard_value(effectiveq) * normSqr_;
        // inversion will fail at the Brent's bounds-check if this is not enough
        // (q is very close to 1.), in a bad combination fails around 1.-1.e-7
        Real xMax = 1.e6;
        return sign *
            Brent().solve([&](Real x) -> Real { return distrib_(x) - effectiveq; },
                          accuracy_, (xMin+xMax)/2., xMin, xMax);
    }

}