1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/math/convolvedstudentt.hpp>
#include <ql/errors.hpp>
#include <ql/math/factorial.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/functional.hpp>
#include <boost/math/distributions/students_t.hpp>
namespace QuantLib {
CumulativeBehrensFisher::CumulativeBehrensFisher(const std::vector<Integer>& degreesFreedom,
const std::vector<Real>& factors)
: degreesFreedom_(degreesFreedom), factors_(factors), polyConvolved_(std::vector<Real>(1, 1.))
{
QL_REQUIRE(degreesFreedom.size() == factors.size(),
"Incompatible sizes in convolution.");
for (int i : degreesFreedom) {
QL_REQUIRE(i % 2 != 0, "Even degree of freedom not allowed");
QL_REQUIRE(i >= 0, "Negative degree of freedom not allowed");
}
for(Size i=0; i<degreesFreedom_.size(); i++)
polynCharFnc_.push_back(polynCharactT((degreesFreedom[i]-1)/2));
// adjust the polynomial coefficients by the factors in the linear
// combination:
for(Size i=0; i<degreesFreedom_.size(); i++) {
Real multiplier = 1.;
for(Size k=1; k<polynCharFnc_[i].size(); k++) {
multiplier *= std::abs(factors_[i]);
polynCharFnc_[i][k] *= multiplier;
}
}
//convolution, here it is a product of polynomials and exponentials
for (auto& i : polynCharFnc_)
polyConvolved_ = convolveVectorPolynomials(polyConvolved_, i);
// trim possible zeros that might have arised:
auto it = polyConvolved_.rbegin();
while (it != polyConvolved_.rend()) {
if (*it == 0.) {
polyConvolved_.pop_back();
it = polyConvolved_.rbegin();
}else{
break;
}
}
// cache 'a' value (the exponent)
for(Size i=0; i<degreesFreedom_.size(); i++)
a_ += std::sqrt(static_cast<Real>(degreesFreedom_[i]))
* std::abs(factors_[i]);
a2_ = a_ * a_;
}
std::vector<Real> CumulativeBehrensFisher::polynCharactT(Natural n) const {
Natural nu = 2 * n +1;
std::vector<Real> low(1,1.), high(1,1.);
high.push_back(std::sqrt(static_cast<Real>(nu)));
if(n==0) return low;
if(n==1) return high;
for(Size k=1; k<n; k++) {
std::vector<Real> recursionFactor(1,0.); // 0 coef
recursionFactor.push_back(0.); // 1 coef
recursionFactor.push_back(nu/((2.*k+1.)*(2.*k-1.))); // 2 coef
std::vector<Real> lowUp =
convolveVectorPolynomials(recursionFactor, low);
//add them up:
for(Size i=0; i<high.size(); i++)
lowUp[i] += high[i];
low = high;
high = lowUp;
}
return high;
}
std::vector<Real> CumulativeBehrensFisher::convolveVectorPolynomials(
const std::vector<Real>& v1,
const std::vector<Real>& v2) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(!v1.empty() && !v2.empty(),
"Incorrect vectors in polynomial.");
#endif
const std::vector<Real>& shorter = v1.size() < v2.size() ? v1 : v2;
const std::vector<Real>& longer = (v1 == shorter) ? v2 : v1;
Size newDegree = v1.size()+v2.size()-2;
std::vector<Real> resultB(newDegree+1, 0.);
for(Size polyOrdr=0; polyOrdr<resultB.size(); polyOrdr++) {
for(Size i=std::max<Integer>(0, polyOrdr-longer.size()+1);
i<=std::min(polyOrdr, shorter.size()-1); i++)
resultB[polyOrdr] += shorter[i]*longer[polyOrdr-i];
}
return resultB;
}
Probability CumulativeBehrensFisher::operator()(const Real x) const {
// 1st & 0th terms with the table integration
Real integral = polyConvolved_[0] * std::atan(x/a_);
Real squared = a2_ + x*x;
Real rootsqr = std::sqrt(squared);
Real atan2xa = std::atan2(-x,a_);
if(polyConvolved_.size()>1)
integral += polyConvolved_[1] * x/squared;
for(Size exponent = 2; exponent <polyConvolved_.size(); exponent++) {
integral -= polyConvolved_[exponent] *
Factorial::get(exponent-1) * std::sin((exponent)*atan2xa)
/std::pow(rootsqr, static_cast<Real>(exponent));
}
return .5 + integral / M_PI;
}
Probability
CumulativeBehrensFisher::density(const Real x) const {
Real squared = a2_ + x*x;
Real integral = polyConvolved_[0] * a_ / squared;
Real rootsqr = std::sqrt(squared);
Real atan2xa = std::atan2(-x,a_);
for(Size exponent=1; exponent <polyConvolved_.size(); exponent++) {
integral += polyConvolved_[exponent] *
Factorial::get(exponent) * std::cos((exponent+1)*atan2xa)
/std::pow(rootsqr, static_cast<Real>(exponent+1) );
}
return integral / M_PI;
}
InverseCumulativeBehrensFisher::InverseCumulativeBehrensFisher(
const std::vector<Integer>& degreesFreedom,
const std::vector<Real>& factors,
Real accuracy)
: normSqr_(std::inner_product(factors.begin(), factors.end(),
factors.begin(), Real(0.))),
accuracy_(accuracy), distrib_(degreesFreedom, factors) { }
Real InverseCumulativeBehrensFisher::operator()(const Probability q) const {
Probability effectiveq;
Real sign;
// since the distrib is symmetric solve only on the right side:
if(q==0.5) {
return 0.;
}else if(q < 0.5) {
sign = -1.;
effectiveq = 1.-q;
}else{
sign = 1.;
effectiveq = q;
}
Real xMin =
InverseCumulativeNormal::standard_value(effectiveq) * normSqr_;
// inversion will fail at the Brent's bounds-check if this is not enough
// (q is very close to 1.), in a bad combination fails around 1.-1.e-7
Real xMax = 1.e6;
return sign *
Brent().solve([&](Real x) -> Real { return distrib_(x) - effectiveq; },
accuracy_, (xMin+xMax)/2., xMin, xMax);
}
}
|