1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015 Andres Hernandez
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/math/fireflyalgorithm.hpp>
#include <ql/math/randomnumbers/sobolrsg.hpp>
#include <algorithm>
#include <cmath>
#include <utility>
namespace QuantLib {
FireflyAlgorithm::FireflyAlgorithm(Size M,
ext::shared_ptr<Intensity> intensity,
ext::shared_ptr<RandomWalk> randomWalk,
Size Mde,
Real mutation,
Real crossover,
unsigned long seed)
: mutation_(mutation), crossover_(crossover), M_(M), Mde_(Mde), Mfa_(M_ - Mde_),
intensity_(std::move(intensity)), randomWalk_(std::move(randomWalk)),
generator_(seed), distribution_(Mfa_, Mde > 0 ? M_ - 1 : M_),
rng_(seed) {
QL_REQUIRE(M_ >= Mde_,
"Differential Evolution subpopulation cannot be larger than total population");
}
void FireflyAlgorithm::startState(Problem &P, const EndCriteria &endCriteria) {
N_ = P.currentValue().size();
x_.reserve(M_);
xI_.reserve(M_);
xRW_.reserve(M_);
values_.reserve(M_);
uX_ = P.constraint().upperBound(P.currentValue());
lX_ = P.constraint().lowerBound(P.currentValue());
Array bounds = uX_ - lX_;
//Random initialization is done by Sobol sequence
SobolRsg sobol(N_);
//Prepare containers
for (Size i = 0; i < M_; i++) {
const SobolRsg::sample_type::value_type &sample = sobol.nextSequence().value;
x_.emplace_back(N_, 0.0);
xI_.emplace_back(N_, 0.0);
xRW_.emplace_back(N_, 0.0);
Array& x = x_.back();
for (Size j = 0; j < N_; j++) {
//Assign X=lb+(ub-lb)*random
x[j] = lX_[j] + bounds[j] * sample[j];
}
//Evaluate point
values_.emplace_back(P.value(x), i);
}
//init intensity & randomWalk
intensity_->init(this);
randomWalk_->init(this);
}
EndCriteria::Type FireflyAlgorithm::minimize(Problem &P, const EndCriteria &endCriteria) {
QL_REQUIRE(!P.constraint().empty(), "Firefly Algorithm is a constrained optimizer");
EndCriteria::Type ecType = EndCriteria::None;
P.reset();
Size iteration = 0;
Size iterationStat = 0;
Size maxIteration = endCriteria.maxIterations();
Size maxIStationary = endCriteria.maxStationaryStateIterations();
startState(P, endCriteria);
bool isFA = Mfa_ > 0;
//Variables for DE
Array z(N_, 0.0);
Size indexR1, indexR2;
decltype(distribution_)::param_type nParam(0, N_ - 1);
//Set best value & position
Real bestValue = values_[0].first;
Size bestPosition = 0;
for (Size i = 1; i < M_; i++) {
if (values_[i].first < bestValue) {
bestPosition = i;
bestValue = values_[i].first;
}
}
Array bestX = x_[bestPosition];
//Run optimization
do {
iteration++;
iterationStat++;
//Check if stopping criteria is met
if (iteration > maxIteration || iterationStat > maxIStationary)
break;
//Divide into two subpopulations
//First sort values
std::sort(values_.begin(), values_.end());
//Differential evolution
if(Mfa_ < M_){
Size indexBest = values_[0].second;
Array& xBest = x_[indexBest];
for (Size i = Mfa_; i < M_; i++) {
if (!isFA) {
//Pure DE requires random index
indexBest = distribution_(generator_);
xBest = x_[indexBest];
}
do {
indexR1 = distribution_(generator_);
} while(indexR1 == indexBest);
do {
indexR2 = distribution_(generator_);
} while(indexR2 == indexBest || indexR2 == indexR1);
Size index = values_[i].second;
Array& x = x_[index];
Array& xR1 = x_[indexR1];
Array& xR2 = x_[indexR2];
Size rIndex = distribution_(generator_, nParam);
for (Size j = 0; j < N_; j++) {
if (j == rIndex || rng_.nextReal() <= crossover_) {
//Change x[j] according to crossover
z[j] = xBest[j] + mutation_*(xR1[j] - xR2[j]);
} else {
z[j] = x[j];
}
//Enforce bounds on positions
if (z[j] < lX_[j]) {
z[j] = lX_[j];
}
else if (z[j] > uX_[j]) {
z[j] = uX_[j];
}
}
Real val = P.value(z);
if (val < values_[index].first) {
//Accept new point
x = z;
values_[index].first = val;
//mark best
if (val < bestValue) {
bestValue = val;
bestX = x;
iterationStat = 0;
}
}
}
}
//Firefly algorithm
if(isFA){
//According to the intensity, determine best global position
intensity_->findBrightest();
//Prepare random walk
randomWalk_->walk();
//Loop over particles
for (Size i = 0; i < Mfa_; i++) {
Size index = values_[i].second;
Array& x = x_[index];
Array& xI = xI_[index];
Array& xRW = xRW_[index];
//Loop over dimensions
for (Size j = 0; j < N_; j++) {
//Update position
z[j] = x[j] + xI[j] + xRW[j];
//Enforce bounds on positions
if (z[j] < lX_[j]) {
z[j] = lX_[j];
}
else if (z[j] > uX_[j]) {
z[j] = uX_[j];
}
}
Real val = P.value(z);
if(!std::isnan(val))
{
//Accept new point
x = z;
values_[index].first = val;
//mark best
if (val < bestValue) {
bestValue = val;
bestX = x;
iterationStat = 0;
}
}
}
}
} while (true);
if (iteration > maxIteration)
ecType = EndCriteria::MaxIterations;
else
ecType = EndCriteria::StationaryPoint;
//Set result to best point
P.setCurrentValue(bestX);
P.setFunctionValue(bestValue);
return ecType;
}
void FireflyAlgorithm::Intensity::findBrightest() {
//Brightest ignores all others
Array& xI = (*xI_)[(*values_)[0].second];
for (Size j = 0; j < N_; j++) {
xI[j] = 0.0;
}
for (Size i = 1; i < Mfa_; i++) {
//values_ is already sorted
Size index = (*values_)[i].second;
const Array& x = (*x_)[index];
Array& xI = (*xI_)[index];
for (Size j = 0; j < N_; j++) {
xI[j] = 0.0;
}
Real valueX = (*values_)[i].first;
for (Size k = 0; k < i - 1; k++){
const Array& y = (*x_)[(*values_)[k].second];
Real valueY = (*values_)[k].first;
Real intensity = intensityImpl(valueX, valueY, distance(x, y));
xI += intensity*(y - x);
}
}
}
}
|