1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2015, 2024 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file laplaceinterpolation.hpp
\brief Laplace interpolation of missing values
*/
#include <ql/experimental/math/laplaceinterpolation.hpp>
#include <ql/math/matrix.hpp>
#include <ql/math/matrixutilities/bicgstab.hpp>
#include <ql/math/matrixutilities/sparsematrix.hpp>
#include <ql/methods/finitedifferences/meshers/fdm1dmesher.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
#include <ql/methods/finitedifferences/meshers/predefined1dmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearopcomposite.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/operators/secondderivativeop.hpp>
#include <ql/methods/finitedifferences/operators/triplebandlinearop.hpp>
namespace QuantLib {
LaplaceInterpolation::LaplaceInterpolation(std::function<Real(const std::vector<Size>&)> y,
std::vector<std::vector<Real>> x,
Real relTol,
Size maxIterMultiplier)
: y_(std::move(y)), x_(std::move(x)), relTol_(relTol), maxIterMultiplier_(maxIterMultiplier) {
// set up the mesher
std::vector<Size> dim;
coordinateIncluded_.resize(x_.size());
for (Size i = 0; i < x_.size(); ++i) {
coordinateIncluded_[i] = x_[i].size() > 1;
if (coordinateIncluded_[i])
dim.push_back(x_[i].size());
}
numberOfCoordinatesIncluded_ = dim.size();
if (numberOfCoordinatesIncluded_ == 0) {
return;
}
QL_REQUIRE(!dim.empty(), "LaplaceInterpolation: singular point or no points given");
layout_ = ext::make_shared<FdmLinearOpLayout>(dim);
std::vector<ext::shared_ptr<Fdm1dMesher>> meshers;
for (auto & i : x_) {
if (i.size() > 1)
meshers.push_back(ext::make_shared<Predefined1dMesher>(i));
}
auto mesher = ext::make_shared<FdmMesherComposite>(layout_, meshers);
// set up the Laplace operator and convert it to matrix
struct LaplaceOp : public FdmLinearOpComposite {
explicit LaplaceOp(const ext::shared_ptr<FdmMesher>& mesher) {
for (Size direction = 0; direction < mesher->layout()->dim().size(); ++direction) {
if (mesher->layout()->dim()[direction] > 1)
map_.push_back(SecondDerivativeOp(direction, mesher));
}
}
std::vector<TripleBandLinearOp> map_;
Size size() const override { QL_FAIL("no impl"); }
void setTime(Time t1, Time t2) override { QL_FAIL("no impl"); }
Array apply(const array_type& r) const override { QL_FAIL("no impl"); }
Array apply_mixed(const Array& r) const override { QL_FAIL("no impl"); }
Array apply_direction(Size direction, const Array& r) const override {
QL_FAIL("no impl");
}
Array solve_splitting(Size direction, const Array& r, Real s) const override {
QL_FAIL("no impl");
}
Array preconditioner(const Array& r, Real s) const override { QL_FAIL("no impl"); }
std::vector<SparseMatrix> toMatrixDecomp() const override {
std::vector<SparseMatrix> decomp;
decomp.reserve(map_.size());
for (auto const& m : map_)
decomp.push_back(m.toMatrix());
return decomp;
}
};
SparseMatrix op = LaplaceOp(mesher).toMatrix();
// set up the linear system to solve
Size N = layout_->size();
SparseMatrix g(N, N, 5 * N);
Array rhs(N, 0.0), guess(N, 0.0);
Real guessTmp = 0.0;
struct f_A {
const SparseMatrix& g;
explicit f_A(const SparseMatrix& g) : g(g) {}
Array operator()(const Array& x) const { return prod(g, x); }
};
auto rowit = op.begin1();
Size count = 0;
std::vector<Real> corner_h(dim.size());
std::vector<Size> corner_neighbour_index(dim.size());
for (auto const& pos : *layout_) {
const auto& coord = pos.coordinates();
Real val =
y_(numberOfCoordinatesIncluded_ == x_.size() ? coord : fullCoordinates(coord));
QL_REQUIRE(rowit != op.end1() && rowit.index1() == count,
"LaplaceInterpolation: op matrix row iterator ("
<< (rowit != op.end1() ? std::to_string(rowit.index1()) : "na")
<< ") does not match expected row count (" << count << ")");
if (val == Null<Real>()) {
bool isCorner = true;
for (Size d = 0; d < dim.size() && isCorner; ++d) {
if (coord[d] == 0) {
corner_h[d] = meshers[d]->dplus(0);
corner_neighbour_index[d] = 1;
} else if (coord[d] == layout_->dim()[d] - 1) {
corner_h[d] = meshers[d]->dminus(dim[d] - 1);
corner_neighbour_index[d] = dim[d] - 2;
} else {
isCorner = false;
}
}
if (isCorner) {
// handling of the "corners", all second derivs are zero in the op
// this directly generalizes Numerical Recipes, 3rd ed, eq 3.8.6
Real sum_corner_h =
std::accumulate(corner_h.begin(), corner_h.end(), Real(0.0), std::plus<>());
for (Size j = 0; j < dim.size(); ++j) {
std::vector<Size> coord_j(coord);
coord_j[j] = corner_neighbour_index[j];
Real weight = 0.0;
for (Size i = 0; i < dim.size(); ++i) {
if (i != j)
weight += corner_h[i];
}
weight = dim.size() == 1 ? Real(1.0) : Real(weight / sum_corner_h);
g(count, layout_->index(coord_j)) = -weight;
}
g(count, count) = 1.0;
} else {
// point with at least one dimension with non-trivial second derivative
for (auto colit = rowit.begin(); colit != rowit.end(); ++colit)
g(count, colit.index2()) = *colit;
}
rhs[count] = 0.0;
guess[count] = guessTmp;
} else {
g(count, count) = 1;
rhs[count] = val;
guess[count] = guessTmp = val;
}
++count;
++rowit;
}
interpolatedValues_ = BiCGstab(f_A(g), maxIterMultiplier_ * N, relTol_).solve(rhs, guess).x;
}
std::vector<Size>
LaplaceInterpolation::projectedCoordinates(const std::vector<Size>& coordinates) const {
std::vector<Size> tmp;
for (Size i = 0; i < coordinates.size(); ++i) {
if (coordinateIncluded_[i])
tmp.push_back(coordinates[i]);
}
return tmp;
}
std::vector<Size>
LaplaceInterpolation::fullCoordinates(const std::vector<Size>& projectedCoordinates) const {
std::vector<Size> tmp(coordinateIncluded_.size(), 0);
for (Size i = 0, count = 0; i < coordinateIncluded_.size(); ++i) {
if (coordinateIncluded_[i])
tmp[i] = projectedCoordinates[count++];
}
return tmp;
}
Real LaplaceInterpolation::operator()(const std::vector<Size>& coordinates) const {
QL_REQUIRE(coordinates.size() == x_.size(), "LaplaceInterpolation::operator(): expected "
<< x_.size() << " coordinates, got "
<< coordinates.size());
if (numberOfCoordinatesIncluded_ == 0) {
Real val = y_(coordinates);
return val == Null<Real>() ? 0.0 : val;
} else {
return interpolatedValues_[layout_->index(numberOfCoordinatesIncluded_ == x_.size() ?
coordinates :
projectedCoordinates(coordinates))];
}
}
void laplaceInterpolation(Matrix& A,
const std::vector<Real>& x,
const std::vector<Real>& y,
Real relTol,
Size maxIterMultiplier) {
std::vector<std::vector<Real>> tmp;
tmp.push_back(y);
tmp.push_back(x);
if (y.empty()) {
tmp[0].resize(A.rows());
std::iota(tmp[0].begin(), tmp[0].end(), 0.0);
}
if (x.empty()) {
tmp[1].resize(A.columns());
std::iota(tmp[1].begin(), tmp[1].end(), 0.0);
}
LaplaceInterpolation interpolation(
[&A](const std::vector<Size>& coordinates) {
return A(coordinates[0], coordinates[1]);
},
tmp, relTol, maxIterMultiplier);
for (Size i = 0; i < A.rows(); ++i) {
for (Size j = 0; j < A.columns(); ++j) {
if (A(i, j) == Null<Real>())
A(i, j) = interpolation({i, j});
}
}
}
} // namespace QuantLib
|