1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2016 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file squarerootclvmodel.cpp
\brief CLV model with a square root kernel process
*/
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/squarerootprocess.hpp>
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/experimental/models/squarerootclvmodel.hpp>
#include <ql/methods/finitedifferences/utilities/gbsmrndcalculator.hpp>
#include <boost/math/distributions/non_central_chi_squared.hpp>
#include <utility>
namespace QuantLib {
SquareRootCLVModel::SquareRootCLVModel(
const ext::shared_ptr<GeneralizedBlackScholesProcess>& bsProcess,
ext::shared_ptr<SquareRootProcess> sqrtProcess,
std::vector<Date> maturityDates,
Size lagrangeOrder,
Real pMax,
Real pMin)
: pMax_(pMax), pMin_(pMin), bsProcess_(bsProcess), sqrtProcess_(std::move(sqrtProcess)),
maturityDates_(std::move(maturityDates)), lagrangeOrder_(lagrangeOrder),
rndCalculator_(ext::make_shared<GBSMRNDCalculator>(bsProcess)) {}
Real SquareRootCLVModel::cdf(const Date& d, Real k) const {
return rndCalculator_->cdf(k, bsProcess_->time(d));
}
Real SquareRootCLVModel::invCDF(const Date& d, Real q) const {
return rndCalculator_->invcdf(q, bsProcess_->time(d));
}
std::pair<Real, Real> SquareRootCLVModel::nonCentralChiSquaredParams(
const Date& d) const {
const Time t = bsProcess_->time(d);
const Real kappa = sqrtProcess_->a();
const Real theta = sqrtProcess_->b();
const Real sigma = sqrtProcess_->sigma();
const Real df = 4*theta*kappa/(sigma*sigma);
const Real ncp = 4*kappa*std::exp(-kappa*t)
/ (sigma*sigma*(1-std::exp(-kappa*t)))*sqrtProcess_->x0();
return std::make_pair(df, ncp);
}
Array SquareRootCLVModel::collocationPointsX(const Date& d) const {
const std::pair<Real, Real> p = nonCentralChiSquaredParams(d);
Array x = GaussianQuadrature(lagrangeOrder_,
GaussNonCentralChiSquaredPolynomial(p.first, p.second))
.x();
std::sort(x.begin(), x.end());
const boost::math::non_central_chi_squared_distribution<Real>
dist(p.first, p.second);
const Real xMin = std::max(x.front(),
(pMin_ == Null<Real>())
? 0.0 : boost::math::quantile(dist, pMin_));
const Real xMax = std::min(x.back(),
(pMax_ == Null<Real>())
? QL_MAX_REAL : boost::math::quantile(dist, pMax_));
const Real b = xMin - x.front();
const Real a = (xMax - xMin)/(x.back() - x.front());
for (Real& i : x) {
i = a * i + b;
}
return x;
}
Array SquareRootCLVModel::collocationPointsY(const Date& d) const {
const Array x = collocationPointsX(d);
const std::pair<Real, Real> params = nonCentralChiSquaredParams(d);
const boost::math::non_central_chi_squared_distribution<Real>
dist(params.first, params.second);
Array s(x.size());
for (Size i=0, n=s.size(); i < n; ++i) {
const Real q = boost::math::cdf(dist, x[i]);
s[i] = invCDF(d, q);
}
return s;
}
std::function<Real(Time, Real)> SquareRootCLVModel::g() const {
calculate();
return g_;
}
void SquareRootCLVModel::performCalculations() const {
g_ = std::function<Real(Time, Real)>(MappingFunction(*this));
}
SquareRootCLVModel::MappingFunction::MappingFunction(
const SquareRootCLVModel& model)
: s_(ext::make_shared<Matrix>(
model.maturityDates_.size(), model.lagrangeOrder_)),
x_(ext::make_shared<Matrix>(
model.maturityDates_.size(), model.lagrangeOrder_)) {
std::vector<Date> maturityDates = model.maturityDates_;
std::sort(maturityDates.begin(), maturityDates.end());
const ext::shared_ptr<GeneralizedBlackScholesProcess>&
bsProcess = model.bsProcess_;
for (Size i=0, n = maturityDates.size(); i < n; ++i) {
const Date maturityDate = maturityDates[i];
const Array x = model.collocationPointsX(maturityDate);
const Array y = model.collocationPointsY(maturityDate);
std::copy(x.begin(), x.end(), x_->row_begin(i));
std::copy(y.begin(), y.end(), s_->row_begin(i));
const Time maturity = bsProcess->time(maturityDate);
interpl.insert(
std::make_pair(maturity,
ext::make_shared<LagrangeInterpolation>(
x_->row_begin(i), x_->row_end(i),
s_->row_begin(i))));
}
}
Real SquareRootCLVModel::MappingFunction::operator()(Time t,Real x) const {
const auto ge = interpl.lower_bound(t);
if (close_enough(ge->first, t)) {
return (*ge->second)(x, true);
}
QL_REQUIRE(ge != interpl.end() && ge != interpl.begin(),
"extrapolation to large or small t is not allowed");
const Time t1 = ge->first;
const Real y1 = (*ge->second)(x, true);
interpl_type::const_iterator lt = ge;
std::advance(lt, -1);
const Time t0 = lt->first;
const Real y0 = (*lt->second)(x, true);
return y0 + (y1 - y0)/(t1 - t0)*(t - t0);
}
}
|