1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003, 2004, 2005, 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file comparison.hpp
\brief floating-point comparisons
*/
#ifndef quantlib_comparison_hpp
#define quantlib_comparison_hpp
#include <ql/types.hpp>
#include <ql/shared_ptr.hpp>
namespace QuantLib {
/*! Follows somewhat the advice of Knuth on checking for floating-point
equality. The closeness relationship is:
\f[
\mathrm{close}(x,y,n) \equiv |x-y| \leq \varepsilon |x|
\wedge |x-y| \leq \varepsilon |y|
\f]
where \f$ \varepsilon \f$ is \f$ n \f$ times the machine accuracy;
\f$ n \f$ equals 42 if not given.
*/
bool close(Real x, Real y);
bool close(Real x, Real y, Size n);
/*! Follows somewhat the advice of Knuth on checking for floating-point
equality. The closeness relationship is:
\f[
\mathrm{close}(x,y,n) \equiv |x-y| \leq \varepsilon |x|
\vee |x-y| \leq \varepsilon |y|
\f]
where \f$ \varepsilon \f$ is \f$ n \f$ times the machine accuracy;
\f$ n \f$ equals 42 if not given.
*/
bool close_enough(Real x, Real y);
bool close_enough(Real x, Real y, Size n);
// inline definitions
inline bool close(Real x, Real y) {
// we're duplicating the code here instead of calling close(x,y,42)
// for optimization; this allows us to make tolerance constexpr
// and shave a few more cycles.
// Deals with +infinity and -infinity representations etc.
if (x == y)
return true;
Real diff = std::fabs(x-y);
constexpr double tolerance = 42 * QL_EPSILON;
if (x == 0.0 || y == 0.0)
return diff < (tolerance * tolerance);
return diff <= tolerance*std::fabs(x) &&
diff <= tolerance*std::fabs(y);
}
inline bool close(Real x, Real y, Size n) {
// Deals with +infinity and -infinity representations etc.
if (x == y)
return true;
Real diff = std::fabs(x-y), tolerance = n * QL_EPSILON;
if (x == 0.0 || y == 0.0)
return diff < (tolerance * tolerance);
return diff <= tolerance*std::fabs(x) &&
diff <= tolerance*std::fabs(y);
}
inline bool close_enough(Real x, Real y) {
// see close() for a note on duplication
// Deals with +infinity and -infinity representations etc.
if (x == y)
return true;
Real diff = std::fabs(x-y);
constexpr double tolerance = 42 * QL_EPSILON;
if (x == 0.0 || y == 0.0) // x or y = 0.0
return diff < (tolerance * tolerance);
return diff <= tolerance*std::fabs(x) ||
diff <= tolerance*std::fabs(y);
}
inline bool close_enough(Real x, Real y, Size n) {
// Deals with +infinity and -infinity representations etc.
if (x == y)
return true;
Real diff = std::fabs(x-y), tolerance = n * QL_EPSILON;
if (x == 0.0 || y == 0.0)
return diff < (tolerance * tolerance);
return diff <= tolerance*std::fabs(x) ||
diff <= tolerance*std::fabs(y);
}
//! compare two objects by date
/*! There is no generic implementation of this struct.
Template specializations will have to be defined for
each needed type (see CashFlow for an example.)
*/
template <class T> struct earlier_than;
/* partial specialization for shared pointers, forwarding to their
pointees. */
template <class T>
struct earlier_than<ext::shared_ptr<T> > {
bool operator()(const ext::shared_ptr<T>& x,
const ext::shared_ptr<T>& y) const {
return earlier_than<T>()(*x,*y);
}
};
}
#endif
|