File: comparison.hpp

package info (click to toggle)
quantlib 1.40-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,768 kB
  • sloc: cpp: 398,987; makefile: 6,574; python: 214; sh: 150; lisp: 86
file content (145 lines) | stat: -rw-r--r-- 4,606 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003, 2004, 2005, 2007 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file comparison.hpp
    \brief floating-point comparisons
*/

#ifndef quantlib_comparison_hpp
#define quantlib_comparison_hpp

#include <ql/types.hpp>
#include <ql/shared_ptr.hpp>

namespace QuantLib {

    /*! Follows somewhat the advice of Knuth on checking for floating-point
        equality. The closeness relationship is:
        \f[
        \mathrm{close}(x,y,n) \equiv |x-y| \leq \varepsilon |x|
                              \wedge |x-y| \leq \varepsilon |y|
        \f]
        where \f$ \varepsilon \f$ is \f$ n \f$ times the machine accuracy;
        \f$ n \f$ equals 42 if not given.
    */
    bool close(Real x, Real y);
    bool close(Real x, Real y, Size n);

    /*! Follows somewhat the advice of Knuth on checking for floating-point
        equality. The closeness relationship is:
        \f[
        \mathrm{close}(x,y,n) \equiv |x-y| \leq \varepsilon |x|
                                \vee |x-y| \leq \varepsilon |y|
        \f]
        where \f$ \varepsilon \f$ is \f$ n \f$ times the machine accuracy;
        \f$ n \f$ equals 42 if not given.
    */
    bool close_enough(Real x, Real y);
    bool close_enough(Real x, Real y, Size n);


    // inline definitions

    inline bool close(Real x, Real y) {
        // we're duplicating the code here instead of calling close(x,y,42)
        // for optimization; this allows us to make tolerance constexpr
        // and shave a few more cycles.

        // Deals with +infinity and -infinity representations etc.
        if (x == y)
            return true;

        Real diff = std::fabs(x-y);
        constexpr double tolerance = 42 * QL_EPSILON;

        if (x == 0.0 || y == 0.0)
            return diff < (tolerance * tolerance);

        return diff <= tolerance*std::fabs(x) &&
               diff <= tolerance*std::fabs(y);
    }

    inline bool close(Real x, Real y, Size n) {
        // Deals with +infinity and -infinity representations etc.
        if (x == y)
            return true;

        Real diff = std::fabs(x-y), tolerance = n * QL_EPSILON;

        if (x == 0.0 || y == 0.0)
            return diff < (tolerance * tolerance);

        return diff <= tolerance*std::fabs(x) &&
               diff <= tolerance*std::fabs(y);
    }

    inline bool close_enough(Real x, Real y) {
        // see close() for a note on duplication

        // Deals with +infinity and -infinity representations etc.
        if (x == y)
            return true;

        Real diff = std::fabs(x-y);
        constexpr double tolerance = 42 * QL_EPSILON;

        if (x == 0.0 || y == 0.0) // x or y = 0.0
            return diff < (tolerance * tolerance);

        return diff <= tolerance*std::fabs(x) ||
               diff <= tolerance*std::fabs(y);
    }

    inline bool close_enough(Real x, Real y, Size n) {
        // Deals with +infinity and -infinity representations etc.
        if (x == y)
            return true;

        Real diff = std::fabs(x-y), tolerance = n * QL_EPSILON;

        if (x == 0.0 || y == 0.0)
            return diff < (tolerance * tolerance);

        return diff <= tolerance*std::fabs(x) ||
               diff <= tolerance*std::fabs(y);
    }



    //! compare two objects by date
    /*! There is no generic implementation of this struct.
        Template specializations will have to be defined for
        each needed type (see CashFlow for an example.)
    */
    template <class T> struct earlier_than;

    /* partial specialization for shared pointers, forwarding to their
       pointees. */
    template <class T>
    struct earlier_than<ext::shared_ptr<T> > {
        bool operator()(const ext::shared_ptr<T>& x,
                        const ext::shared_ptr<T>& y) const {
            return earlier_than<T>()(*x,*y);
        }
    };

}


#endif