1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2020 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file exponentialintegrals.cpp
*/
#include <ql/errors.hpp>
#include <ql/mathconstants.hpp>
#include <ql/math/comparison.hpp>
#include <ql/math/integrals/exponentialintegrals.hpp>
#include <boost/math/special_functions/sign.hpp>
#include <cmath>
namespace QuantLib {
namespace exponential_integrals_helper {
// Reference:
// Rowe et al: GALSIM: The modular galaxy image simulation toolkit
// https://arxiv.org/abs/1407.7676
Real f(Real x) {
const Real x2 = 1.0/(x*x);
return (
1 + x2*(7.44437068161936700618e2 + x2*(1.96396372895146869801e5
+ x2*(2.37750310125431834034e7 + x2*(1.43073403821274636888e9
+ x2*(4.33736238870432522765e10 + x2*(6.40533830574022022911e11
+ x2*(4.20968180571076940208e12 + x2*(1.00795182980368574617e13
+ x2*(4.94816688199951963482e12 - x2*4.94701168645415959931e11)))))))))
)/(x *(
1 + x2*(7.46437068161927678031e2 + x2*(1.97865247031583951450e5
+ x2*(2.41535670165126845144e7 + x2*(1.47478952192985464958e9
+ x2*(4.58595115847765779830e10 + x2*(7.08501308149515401563e11
+ x2*(5.06084464593475076774e12 + x2*(1.43468549171581016479e13
+ x2*1.11535493509914254097e13))))))))
) );
}
Real g(Real x) {
const Real x2 = 1.0/(x*x);
return x2*(
1 + x2*(8.1359520115168615e2 + x2*(2.35239181626478200e5
+ x2*(3.12557570795778731e7 + x2*(2.06297595146763354e9
+ x2*(6.83052205423625007e10 + x2*(1.09049528450362786e12
+ x2*(7.57664583257834349e12 + x2*(1.81004487464664575e13
+ x2*(6.43291613143049485e12 - x2*1.36517137670871689e12)))))))))
)/(
1 + x2*(8.19595201151451564e2 + x2*(2.40036752835578777e5
+ x2*(3.26026661647090822e7 + x2*(2.23355543278099360e9
+ x2*(7.87465017341829930e10 + x2*(1.39866710696414565e12
+ x2*(1.17164723371736605e13 + x2*(4.01839087307656620e13
+ x2*3.99653257887490811e13))))))))
);
}
}
namespace ExponentialIntegral {
Real Si(Real x) {
if (x < 0)
return -Si(Real(-x));
else if (x <= 4.0) {
const Real x2 = x*x;
return x*
( 1 + x2*(-4.54393409816329991e-2 + x2*(1.15457225751016682e-3
+ x2*(-1.41018536821330254e-5 + x2*(9.43280809438713025e-8
+ x2*(-3.53201978997168357e-10 + x2*(7.08240282274875911e-13
- x2*6.05338212010422477e-16))))))
) / (
1 + x2*(1.01162145739225565e-2 + x2*(4.99175116169755106e-5
+ x2*(1.55654986308745614e-7 + x2*(3.28067571055789734e-10
+ x2*(4.5049097575386581e-13 + x2*3.21107051193712168e-16)))))
);
}
else {
using namespace exponential_integrals_helper;
return M_PI_2 - f(x)*std::cos(x) - g(x)*std::sin(x);
}
}
Real Ci(Real x) {
QL_REQUIRE(x >= 0, "x < 0 => Ci(x) = Ci(-x) + i*pi");
if (x <= 4.0) {
const Real x2 = x*x;
return M_EULER_MASCHERONI + std::log(x) +
x2* ( -0.25 + x2*(7.51851524438898291e-3 +x2*(-1.27528342240267686e-4
+ x2*(1.05297363846239184e-6 +x2*(-4.68889508144848019e-9
+ x2*(1.06480802891189243e-11 - x2*9.93728488857585407e-15)))))
) / (
1 + x2*(1.1592605689110735e-2 + x2*(6.72126800814254432e-5
+ x2*(2.55533277086129636e-7 + x2*(6.97071295760958946e-10
+ x2*(1.38536352772778619e-12 + x2*(1.89106054713059759e-15
+ x2*1.39759616731376855e-18))))))
);
}
else {
using namespace exponential_integrals_helper;
return f(x)*std::sin(x) - g(x)*std::cos(x);
}
}
std::complex<Real> Ei(
const std::complex<Real>& z, const std::complex<Real>& acc) {
if (z.real() == 0.0 && z.imag() == 0.0
&& std::numeric_limits<Real>::has_infinity) {
return std::complex<Real>(-std::numeric_limits<Real>::infinity());
}
constexpr double DIST = 4.5;
constexpr double MAX_ERROR = 5.0 * QL_EPSILON;
const Real z_inf = std::log(0.01*QL_MAX_REAL) + std::log(100.0);
QL_REQUIRE(z.real() < z_inf, "argument error " << z);
const Real z_asym = 2.0 - 1.035*std::log(MAX_ERROR);
using boost::math::sign;
const Real abs_z = std::abs(z);
const auto match = [=](
const std::complex<Real>& z1, const std::complex<Real>& z2)
-> bool {
const std::complex<Real> d = z1 - z2;
return std::abs(d.real()) <= MAX_ERROR*std::abs(z1.real())
&& std::abs(d.imag()) <= MAX_ERROR*std::abs(z1.imag());
};
if (z.real() > z_inf)
return std::complex<Real>(std::exp(z)/z) + acc;
if (abs_z > 1.1*z_asym) {
std::complex<Real> ei = acc + std::complex<Real>(Real(0.0), sign(z.imag())*M_PI);
std::complex<Real> s(std::exp(z)/z);
for (Size i=1; i <= std::floor(abs_z)+1; ++i) {
if (match(ei+s, ei))
return ei+s;
ei += s;
s *= Real(i)/z;
}
QL_FAIL("series conversion issue for Ei(" << z << ")");
}
if (abs_z > DIST && (z.real() < 0 || std::abs(z.imag()) > DIST)) {
std::complex<Real> ei(0.0);
for (Size k = 47; k >=1; --k) {
ei = - Real(k*k)/(2.0*k + 1.0 - z + ei);
}
return (acc + std::complex<Real>(0.0, sign(z.imag())*M_PI))
- std::exp(z)/ (1.0 - z + ei);
}
std::complex<Real> s(0.0), sn=z;
Real nn=1.0;
Size n;
for (n=2; n < 1000 && s+sn*nn != s; ++n) {
s+=sn*nn;
if ((n & 1) != 0U)
nn += 1/(2.0*(n/2) + 1); // NOLINT(bugprone-integer-division)
sn *= -z / Real(2*n);
}
QL_REQUIRE(n < 1000, "series conversion issue for Ei(" << z << ")");
const std::complex<Real> r
= (M_EULER_MASCHERONI + acc) + std::log(z) + std::exp(0.5*z)*s;
if (z.imag() != Real(0.0))
return r;
else
return std::complex<Real>(r.real(), acc.imag());
}
std::complex<Real> Ei(const std::complex<Real>&z) {
return Ei(z, std::complex<Real>(0.0));
}
std::complex<Real> E1(const std::complex<Real>& z) {
if (z.imag() < 0.0) {
return -Ei(-z, std::complex<Real>(0.0, -M_PI));
}
else if (z.imag() > 0.0 || z.real() < 0.0) {
return -Ei(-z, std::complex<Real>(0.0, M_PI));
}
else {
return -Ei(-z);
}
}
// Reference:
// https://functions.wolfram.com/GammaBetaErf/ExpIntegralEi/introductions/ExpIntegrals/ShowAll.html
std::complex<Real> Si(const std::complex<Real>& z) {
if (std::abs(z) <= 0.2) {
std::complex<Real> s(0), nn(z);
Size k;
for (k=2; k < 100 && s != s+nn; ++k) {
s += nn;
nn *= -z*z/((2.0*k-2)*(2*k-1)*(2*k-1))*(2.0*k-3);
}
QL_REQUIRE(k < 100, "series conversion issue for Si(" << z << ")");
return s;
}
else {
const std::complex<Real> i(0.0, 1.0);
return 0.5*i*(E1(-i*z) - E1(i*z)
- std::complex<Real>(0.0, ((z.real() >= 0 && z.imag() >= 0)
|| (z.real() > 0 && z.imag() < 0) )? M_PI : -M_PI));
}
}
std::complex<Real> Ci(const std::complex<Real>& z) {
const std::complex<Real> i(0.0, 1.0);
std::complex<Real> acc(0.0);
if (z.real() < 0.0 && z.imag() >= 0.0)
acc.imag(M_PI);
else if (z.real() <= 0.0 && z.imag() <= 0.0)
acc.imag(-M_PI);
return -0.5*(E1(-i*z) + E1(i*z)) + acc;
}
}
}
|