1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2017 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license0/0 iee along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file gmres.cpp
\brief generalized minimal residual method
*/
#include <ql/math/functional.hpp>
#include <ql/math/matrixutilities/gmres.hpp>
#include <ql/math/matrixutilities/qrdecomposition.hpp>
#include <numeric>
#include <utility>
namespace QuantLib {
GMRES::GMRES(GMRES::MatrixMult A, Size maxIter, Real relTol, GMRES::MatrixMult preConditioner)
: A_(std::move(A)), M_(std::move(preConditioner)), maxIter_(maxIter), relTol_(relTol) {
QL_REQUIRE(maxIter_ > 0, "maxIter must be greater than zero");
}
GMRESResult GMRES::solve(const Array& b, const Array& x0) const {
GMRESResult result = solveImpl(b, x0);
QL_REQUIRE(result.errors.back() < relTol_, "could not converge");
return result;
}
GMRESResult GMRES::solveWithRestart(
Size restart, const Array& b, const Array& x0) const {
GMRESResult result = solveImpl(b, x0);
std::list<Real> errors = result.errors;
for (Size i=0; i < restart-1 && result.errors.back() >= relTol_;++i) {
result = solveImpl(b, result.x);
errors.insert(
errors.end(), result.errors.begin(), result.errors.end());
}
QL_REQUIRE(errors.back() < relTol_, "could not converge");
result.errors = errors;
return result;
}
GMRESResult GMRES::solveImpl(const Array& b, const Array& x0) const {
const Real bn = Norm2(b);
if (bn == 0.0) {
GMRESResult result = { std::list<Real>(1, 0.0), b };
return result;
}
Array x = ((!x0.empty()) ? x0 : Array(b.size(), 0.0));
Array r = b - A_(x);
const Real g = Norm2(r);
if (g/bn < relTol_) {
GMRESResult result = { std::list<Real>(1, g/bn), x };
return result;
}
std::vector<Array> v(1, r/g);
std::vector<Array> h(1, Array(maxIter_, 0.0));
std::vector<Real> c(maxIter_+1), s(maxIter_+1), z(maxIter_+1);
z[0] = g;
std::list<Real> errors(1, g/bn);
for (Size j=0; j < maxIter_ && errors.back() >= relTol_; ++j) {
h.emplace_back(maxIter_, 0.0);
Array w = A_(!M_ ? v[j] : M_(v[j]));
for (Size i=0; i <= j; ++i) {
h[i][j] = DotProduct(w, v[i]);
w -= h[i][j] * v[i];
}
h[j+1][j] = Norm2(w);
if (h[j+1][j] < QL_EPSILON*QL_EPSILON)
break;
v.push_back(w / h[j+1][j]);
for (Size i=0; i < j; ++i) {
const Real h0 = c[i]*h[i][j] + s[i]*h[i+1][j];
const Real h1 =-s[i]*h[i][j] + c[i]*h[i+1][j];
h[i][j] = h0;
h[i+1][j] = h1;
}
const Real nu = std::sqrt(squared(h[j][j]) + squared(h[j+1][j]));
c[j] = h[j][j]/nu;
s[j] = h[j+1][j]/nu;
h[j][j] = nu;
h[j+1][j] = 0.0;
z[j+1] = -s[j]*z[j];
z[j] = c[j] * z[j];
errors.push_back(std::fabs(z[j+1]/bn));
}
const Size k = v.size()-1;
Array y(k, 0.0);
y[k-1]=z[k-1]/h[k-1][k-1];
for (Integer i=k-2; i >= 0; --i) {
y[i] = (z[i] - std::inner_product(
h[i].begin()+i+1, h[i].begin()+k, y.begin()+i+1, Real(0.0)))/h[i][i];
}
Array xm = std::inner_product(
v.begin(), v.begin()+k, y.begin(), Array(x.size(), Real(0.0)));
xm = x + (!M_ ? xm : M_(xm));
GMRESResult result = { errors, xm };
return result;
}
}
|