1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Klaus Spanderen
Copyright (C) 2015 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/optimization/lmdif.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/functional.hpp>
#include <memory>
namespace QuantLib {
LevenbergMarquardt::LevenbergMarquardt(Real epsfcn,
Real xtol,
Real gtol,
bool useCostFunctionsJacobian)
: epsfcn_(epsfcn), xtol_(xtol), gtol_(gtol),
useCostFunctionsJacobian_(useCostFunctionsJacobian) {}
EndCriteria::Type LevenbergMarquardt::minimize(Problem& P,
const EndCriteria& endCriteria) {
P.reset();
const Array& initX = P.currentValue();
currentProblem_ = &P;
initCostValues_ = P.costFunction().values(initX);
int m = initCostValues_.size();
int n = initX.size();
if (useCostFunctionsJacobian_) {
initJacobian_ = Matrix(m,n);
P.costFunction().jacobian(initJacobian_, initX);
}
Array xx = initX;
std::unique_ptr<Real[]> fvec(new Real[m]);
std::unique_ptr<Real[]> diag(new Real[n]);
int mode = 1;
// magic number recommended by the documentation
Real factor = 100;
// lmdif() evaluates cost function n+1 times for each iteration (technically, 2n+1
// times if useCostFunctionsJacobian is true, but lmdif() doesn't account for that)
int maxfev = endCriteria.maxIterations() * (n + 1);
int nprint = 0;
int info = 0;
int nfev = 0;
std::unique_ptr<Real[]> fjac(new Real[m*n]);
int ldfjac = m;
std::unique_ptr<int[]> ipvt(new int[n]);
std::unique_ptr<Real[]> qtf(new Real[n]);
std::unique_ptr<Real[]> wa1(new Real[n]);
std::unique_ptr<Real[]> wa2(new Real[n]);
std::unique_ptr<Real[]> wa3(new Real[n]);
std::unique_ptr<Real[]> wa4(new Real[m]);
// requirements; check here to get more detailed error messages.
QL_REQUIRE(n > 0, "no variables given");
QL_REQUIRE(m >= n,
"less functions (" << m <<
") than available variables (" << n << ")");
QL_REQUIRE(endCriteria.functionEpsilon() >= 0.0,
"negative f tolerance");
QL_REQUIRE(xtol_ >= 0.0, "negative x tolerance");
QL_REQUIRE(gtol_ >= 0.0, "negative g tolerance");
QL_REQUIRE(maxfev > 0, "null number of evaluations");
// call lmdif to minimize the sum of the squares of m functions
// in n variables by the Levenberg-Marquardt algorithm.
MINPACK::LmdifCostFunction lmdifCostFunction =
[this](const auto m, const auto n, const auto x, const auto fvec, const auto iflag) {
this->fcn(m, n, x, fvec);
};
MINPACK::LmdifCostFunction lmdifJacFunction =
useCostFunctionsJacobian_
? [this](const auto m, const auto n, const auto x, const auto fjac, const auto iflag) {
this->jacFcn(m, n, x, fjac);
}
: MINPACK::LmdifCostFunction();
MINPACK::lmdif(m, n, xx.begin(), fvec.get(),
endCriteria.functionEpsilon(),
xtol_,
gtol_,
maxfev,
epsfcn_,
diag.get(), mode, factor,
nprint, &info, &nfev, fjac.get(),
ldfjac, ipvt.get(), qtf.get(),
wa1.get(), wa2.get(), wa3.get(), wa4.get(),
lmdifCostFunction,
lmdifJacFunction);
// for the time being
info_ = info;
// check requirements & endCriteria evaluation
QL_REQUIRE(info != 0, "MINPACK: improper input parameters");
QL_REQUIRE(info != 7, "MINPACK: xtol is too small. no further "
"improvement in the approximate "
"solution x is possible.");
QL_REQUIRE(info != 8, "MINPACK: gtol is too small. fvec is "
"orthogonal to the columns of the "
"jacobian to machine precision.");
EndCriteria::Type ecType = EndCriteria::None;
switch (info) {
case 1:
case 2:
case 3:
case 4:
// 2 and 3 should be StationaryPoint, 4 a new gradient-related value,
// but we keep StationaryFunctionValue for backwards compatibility.
ecType = EndCriteria::StationaryFunctionValue;
break;
case 5:
ecType = EndCriteria::MaxIterations;
break;
case 6:
ecType = EndCriteria::FunctionEpsilonTooSmall;
break;
default:
QL_FAIL("unknown MINPACK result: " << info);
}
// set problem
P.setCurrentValue(std::move(xx));
P.setFunctionValue(P.costFunction().value(P.currentValue()));
return ecType;
}
void LevenbergMarquardt::fcn(int, int n, Real* x, Real* fvec) {
Array xt(n);
std::copy(x, x+n, xt.begin());
// constraint handling needs some improvement in the future:
// starting point should not be close to a constraint violation
if (currentProblem_->constraint().test(xt)) {
const Array& tmp = currentProblem_->values(xt);
std::copy(tmp.begin(), tmp.end(), fvec);
} else {
std::copy(initCostValues_.begin(), initCostValues_.end(), fvec);
}
}
void LevenbergMarquardt::jacFcn(int m, int n, Real* x, Real* fjac) {
Array xt(n);
std::copy(x, x+n, xt.begin());
// constraint handling needs some improvement in the future:
// starting point should not be close to a constraint violation
if (currentProblem_->constraint().test(xt)) {
Matrix tmp(m,n);
currentProblem_->costFunction().jacobian(tmp, xt);
Matrix tmpT = transpose(tmp);
std::copy(tmpT.begin(), tmpT.end(), fjac);
} else {
Matrix tmpT = transpose(initJacobian_);
std::copy(tmpT.begin(), tmpT.end(), fjac);
}
}
}
|