File: levenbergmarquardt.cpp

package info (click to toggle)
quantlib 1.40-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 41,768 kB
  • sloc: cpp: 398,987; makefile: 6,574; python: 214; sh: 150; lisp: 86
file content (169 lines) | stat: -rw-r--r-- 7,225 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Klaus Spanderen
 Copyright (C) 2015 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/optimization/constraint.hpp>
#include <ql/math/optimization/lmdif.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/functional.hpp>
#include <memory>

namespace QuantLib {

    LevenbergMarquardt::LevenbergMarquardt(Real epsfcn,
                                           Real xtol,
                                           Real gtol,
                                           bool useCostFunctionsJacobian)
    : epsfcn_(epsfcn), xtol_(xtol), gtol_(gtol),
      useCostFunctionsJacobian_(useCostFunctionsJacobian) {}

    EndCriteria::Type LevenbergMarquardt::minimize(Problem& P,
                                                   const EndCriteria& endCriteria) {
        P.reset();
        const Array& initX = P.currentValue();
        currentProblem_ = &P;
        initCostValues_ = P.costFunction().values(initX);
        int m = initCostValues_.size();
        int n = initX.size();
        if (useCostFunctionsJacobian_) {
            initJacobian_ = Matrix(m,n);
            P.costFunction().jacobian(initJacobian_, initX);
        }
        Array xx = initX;
        std::unique_ptr<Real[]> fvec(new Real[m]);
        std::unique_ptr<Real[]> diag(new Real[n]);
        int mode = 1;
        // magic number recommended by the documentation
        Real factor = 100;
        // lmdif() evaluates cost function n+1 times for each iteration (technically, 2n+1
        // times if useCostFunctionsJacobian is true, but lmdif() doesn't account for that)
        int maxfev = endCriteria.maxIterations() * (n + 1);
        int nprint = 0;
        int info = 0;
        int nfev = 0;
        std::unique_ptr<Real[]> fjac(new Real[m*n]);
        int ldfjac = m;
        std::unique_ptr<int[]> ipvt(new int[n]);
        std::unique_ptr<Real[]> qtf(new Real[n]);
        std::unique_ptr<Real[]> wa1(new Real[n]);
        std::unique_ptr<Real[]> wa2(new Real[n]);
        std::unique_ptr<Real[]> wa3(new Real[n]);
        std::unique_ptr<Real[]> wa4(new Real[m]);
        // requirements; check here to get more detailed error messages.
        QL_REQUIRE(n > 0, "no variables given");
        QL_REQUIRE(m >= n,
                   "less functions (" << m <<
                   ") than available variables (" << n << ")");
        QL_REQUIRE(endCriteria.functionEpsilon() >= 0.0,
                   "negative f tolerance");
        QL_REQUIRE(xtol_ >= 0.0, "negative x tolerance");
        QL_REQUIRE(gtol_ >= 0.0, "negative g tolerance");
        QL_REQUIRE(maxfev > 0, "null number of evaluations");

        // call lmdif to minimize the sum of the squares of m functions
        // in n variables by the Levenberg-Marquardt algorithm.
        MINPACK::LmdifCostFunction lmdifCostFunction =
            [this](const auto m, const auto n, const auto x, const auto fvec, const auto iflag) {
                this->fcn(m, n, x, fvec);
            };
        MINPACK::LmdifCostFunction lmdifJacFunction =
            useCostFunctionsJacobian_
                ? [this](const auto m, const auto n, const auto x, const auto fjac, const auto iflag) {
                    this->jacFcn(m, n, x, fjac);
                }
                : MINPACK::LmdifCostFunction();
        MINPACK::lmdif(m, n, xx.begin(), fvec.get(),
                       endCriteria.functionEpsilon(),
                       xtol_,
                       gtol_,
                       maxfev,
                       epsfcn_,
                       diag.get(), mode, factor,
                       nprint, &info, &nfev, fjac.get(),
                       ldfjac, ipvt.get(), qtf.get(),
                       wa1.get(), wa2.get(), wa3.get(), wa4.get(),
                       lmdifCostFunction,
                       lmdifJacFunction);
        // for the time being
        info_ = info;
        // check requirements & endCriteria evaluation
        QL_REQUIRE(info != 0, "MINPACK: improper input parameters");
        QL_REQUIRE(info != 7, "MINPACK: xtol is too small. no further "
                                       "improvement in the approximate "
                                       "solution x is possible.");
        QL_REQUIRE(info != 8, "MINPACK: gtol is too small. fvec is "
                                       "orthogonal to the columns of the "
                                       "jacobian to machine precision.");

        EndCriteria::Type ecType = EndCriteria::None;
        switch (info) {
          case 1:
          case 2:
          case 3:
          case 4:
            // 2 and 3 should be StationaryPoint, 4 a new gradient-related value,
            // but we keep StationaryFunctionValue for backwards compatibility.
            ecType = EndCriteria::StationaryFunctionValue;
            break;
          case 5:
            ecType = EndCriteria::MaxIterations;
            break;
          case 6:
            ecType = EndCriteria::FunctionEpsilonTooSmall;
            break;
          default:
            QL_FAIL("unknown MINPACK result: " << info);
        }
        // set problem
        P.setCurrentValue(std::move(xx));
        P.setFunctionValue(P.costFunction().value(P.currentValue()));

        return ecType;
    }

    void LevenbergMarquardt::fcn(int, int n, Real* x, Real* fvec) {
        Array xt(n);
        std::copy(x, x+n, xt.begin());
        // constraint handling needs some improvement in the future:
        // starting point should not be close to a constraint violation
        if (currentProblem_->constraint().test(xt)) {
            const Array& tmp = currentProblem_->values(xt);
            std::copy(tmp.begin(), tmp.end(), fvec);
        } else {
            std::copy(initCostValues_.begin(), initCostValues_.end(), fvec);
        }
    }

    void LevenbergMarquardt::jacFcn(int m, int n, Real* x, Real* fjac) {
        Array xt(n);
        std::copy(x, x+n, xt.begin());
        // constraint handling needs some improvement in the future:
        // starting point should not be close to a constraint violation
        if (currentProblem_->constraint().test(xt)) {
            Matrix tmp(m,n);
            currentProblem_->costFunction().jacobian(tmp, xt);
            Matrix tmpT = transpose(tmp);
            std::copy(tmpT.begin(), tmpT.end(), fjac);
        } else {
            Matrix tmpT = transpose(initJacobian_);
            std::copy(tmpT.begin(), tmpT.end(), fjac);
        }
    }

}