1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Mark Joshi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/optimization/spherecylinder.hpp>
#include <ql/errors.hpp>
#include <algorithm>
namespace QuantLib {
namespace {
template<class F>
Real BrentMinimize(Real low,
Real mid,
Real high,
Real tolerance,
Size maxIt,
const F& objectiveFunction) {
Real W = 0.5*(3.0-std::sqrt(5.0));
Real x = W*low+(1-W)*high;
if (mid > low && mid < high)
x = mid;
Real midValue = objectiveFunction(x);
Size iterations = 0;
while (high-low > tolerance && iterations < maxIt) {
if (x - low > high -x) { // left interval is bigger
Real tentativeNewMid = W*low+(1-W)*x;
Real tentativeNewMidValue =
objectiveFunction(tentativeNewMid);
if (tentativeNewMidValue < midValue) { // go left
high =x;
x = tentativeNewMid;
midValue = tentativeNewMidValue;
} else { // go right
low = tentativeNewMid;
}
} else {
Real tentativeNewMid = W*x+(1-W)*high;
Real tentativeNewMidValue =
objectiveFunction(tentativeNewMid);
if (tentativeNewMidValue < midValue) { // go right
low =x;
x = tentativeNewMid;
midValue = tentativeNewMidValue;
} else { // go left
high = tentativeNewMid;
}
}
++iterations;
}
return x;
}
}
SphereCylinderOptimizer::SphereCylinderOptimizer(Real r,
Real s,
Real alpha,
Real z1,
Real z2,
Real z3,
Real zweight)
: r_(r), s_(s), alpha_(alpha), z1_(z1), z2_(z2), z3_(z3), zweight_(zweight)
{
QL_REQUIRE(r > 0, "sphere must have positive radius");
s = std::max(s, 0.0);
QL_REQUIRE(alpha > 0, "cylinder centre must have positive coordinate");
nonEmpty_ = std::fabs(alpha - s) <= r;
Real cylinderInside = r * r - (s + alpha) * (s + alpha);
if (cylinderInside > 0.0) {
topValue_ = alpha + s;
bottomValue_ = alpha - s;
} else {
bottomValue_ = alpha - s;
Real tmp = r * r - (s * s + alpha * alpha);
if (tmp <= 0) { // max to left of maximum
Real topValue2 = std::sqrt(s * s - tmp * tmp / (4 * alpha * alpha));
topValue_ = alpha - std::sqrt(s * s - topValue2 * topValue2);
} else {
topValue_ = alpha + tmp / (2.0 * alpha);
}
}
}
bool SphereCylinderOptimizer::isIntersectionNonEmpty() const {
return nonEmpty_;
}
void SphereCylinderOptimizer::findClosest(Size maxIterations,
Real tolerance,
Real& y1,
Real& y2,
Real& y3) const
{
Real x1,x2,x3;
findByProjection(x1,x2,x3);
y1 = BrentMinimize(
bottomValue_, x1, topValue_,tolerance, maxIterations,
[&](Real x){ return objectiveFunction(x); });
y2 =std::sqrt(s_*s_ - (y1-alpha_)*(y1-alpha_));
y3= std::sqrt(r_*r_ - y1*y1-y2*y2);
}
Real SphereCylinderOptimizer::objectiveFunction(Real x1) const
{
// Real x1 = alpha_ - std::sqrt(s_*s_-x2*x2);
Real x2sq = s_*s_ - (x1-alpha_)*(x1-alpha_);
// a negative number will be minuscule and a result of rounding error
Real x2 = x2sq >= 0.0 ? Real(std::sqrt(x2sq)) : 0.0;
Real x3= std::sqrt(r_*r_ - x1*x1-x2*x2);
Real err=0.0;
err+= (x1-z1_)*(x1-z1_);
err+= (x2-z2_)*(x2-z2_);
err+= (x3-z3_)*(x3-z3_)*zweight_;
return err;
}
bool SphereCylinderOptimizer::findByProjection(Real& y1,
Real& y2,
Real& y3) const {
Real z1moved = z1_-alpha_;
Real distance = std::sqrt( z1moved*z1moved + z2_*z2_);
Real scale = s_/distance;
Real y1moved = z1moved*scale;
y1 = alpha_+ y1moved;
y2 = scale*z2_;
Real residual = r_*r_ - y1*y1 -y2*y2;
if (residual >=0.0) {
y3 = std::sqrt(residual);
return true;
}
// we are outside the sphere
if (!isIntersectionNonEmpty()) {
y3=0.0;
return false;
}
// intersection is non-empty but projection point is outside sphere
// so take rightmost point
y3 = 0.0;
y1 = topValue_;
y2 = std::sqrt(r_*r_ -y1*y1);
return true;
}
std::vector<Real> sphereCylinderOptimizerClosest(Real r,
Real s,
Real alpha,
Real z1,
Real z2,
Real z3,
Natural maxIterations,
Real tolerance,
Real zweight)
{
SphereCylinderOptimizer optimizer(r, s, alpha, z1, z2, z3, zweight);
std::vector<Real> y(3);
QL_REQUIRE(optimizer.isIntersectionNonEmpty(),
"intersection empty so no solution");
if (maxIterations ==0)
optimizer.findByProjection(y[0], y[1], y[2]);
else
optimizer.findClosest(maxIterations, tolerance, y[0], y[1], y[2]);
return y;
}
}
|