1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/methods/lattices/binomialtree.hpp>
#include <ql/math/distributions/binomialdistribution.hpp>
#include <ql/stochasticprocess.hpp>
namespace QuantLib {
JarrowRudd::JarrowRudd(
const ext::shared_ptr<StochasticProcess1D>& process,
Time end, Size steps, Real)
: EqualProbabilitiesBinomialTree<JarrowRudd>(process, end, steps) {
// drift removed
up_ = process->stdDeviation(0.0, x0_, dt_);
}
CoxRossRubinstein::CoxRossRubinstein(
const ext::shared_ptr<StochasticProcess1D>& process,
Time end, Size steps, Real)
: EqualJumpsBinomialTree<CoxRossRubinstein>(process, end, steps) {
dx_ = process->stdDeviation(0.0, x0_, dt_);
pu_ = 0.5 + 0.5*driftPerStep_/dx_;;
pd_ = 1.0 - pu_;
QL_REQUIRE(pu_<=1.0, "negative probability");
QL_REQUIRE(pu_>=0.0, "negative probability");
}
AdditiveEQPBinomialTree::AdditiveEQPBinomialTree(
const ext::shared_ptr<StochasticProcess1D>& process,
Time end, Size steps, Real)
: EqualProbabilitiesBinomialTree<AdditiveEQPBinomialTree>(process,
end, steps) {
up_ = - 0.5 * driftPerStep_ + 0.5 *
std::sqrt(4.0*process->variance(0.0, x0_, dt_)-
3.0*driftPerStep_*driftPerStep_);
}
Trigeorgis::Trigeorgis(
const ext::shared_ptr<StochasticProcess1D>& process,
Time end, Size steps, Real)
: EqualJumpsBinomialTree<Trigeorgis>(process, end, steps) {
dx_ = std::sqrt(process->variance(0.0, x0_, dt_)+
driftPerStep_*driftPerStep_);
pu_ = 0.5 + 0.5*driftPerStep_/dx_;;
pd_ = 1.0 - pu_;
QL_REQUIRE(pu_<=1.0, "negative probability");
QL_REQUIRE(pu_>=0.0, "negative probability");
}
Tian::Tian(const ext::shared_ptr<StochasticProcess1D>& process,
Time end, Size steps, Real)
: BinomialTree<Tian>(process, end, steps) {
Real q = std::exp(process->variance(0.0, x0_, dt_));
Real r = std::exp(driftPerStep_)*std::sqrt(q);
up_ = 0.5 * r * q * (q + 1 + std::sqrt(q * q + 2 * q - 3));
down_ = 0.5 * r * q * (q + 1 - std::sqrt(q * q + 2 * q - 3));
pu_ = (r - down_) / (up_ - down_);
pd_ = 1.0 - pu_;
// doesn't work
// treeCentering_ = (up_+down_)/2.0;
// up_ = up_-treeCentering_;
QL_REQUIRE(pu_<=1.0, "negative probability");
QL_REQUIRE(pu_>=0.0, "negative probability");
}
LeisenReimer::LeisenReimer(const ext::shared_ptr<StochasticProcess1D>& process,
Time end,
Size steps,
Real strike)
: BinomialTree<LeisenReimer>(process, end, ((steps % 2) != 0U ? steps : (steps + 1))) {
QL_REQUIRE(strike>0.0, "strike must be positive");
Size oddSteps = ((steps % 2) != 0U ? steps : (steps + 1));
Real variance = process->variance(0.0, x0_, end);
Real ermqdt = std::exp(driftPerStep_ + 0.5*variance/oddSteps);
Real d2 = (std::log(x0_/strike) + driftPerStep_*oddSteps ) /
std::sqrt(variance);
pu_ = PeizerPrattMethod2Inversion(d2, oddSteps);
pd_ = 1.0 - pu_;
Real pdash = PeizerPrattMethod2Inversion(d2+std::sqrt(variance),
oddSteps);
up_ = ermqdt * pdash / pu_;
down_ = (ermqdt - pu_ * up_) / (1.0 - pu_);
}
Real Joshi4::computeUpProb(Real k, Real dj) const {
Real alpha = dj/(std::sqrt(8.0));
Real alpha2 = alpha*alpha;
Real alpha3 = alpha*alpha2;
Real alpha5 = alpha3*alpha2;
Real alpha7 = alpha5*alpha2;
Real beta = -0.375*alpha-alpha3;
Real gamma = (5.0/6.0)*alpha5 + (13.0/12.0)*alpha3
+(25.0/128.0)*alpha;
Real delta = -0.1025 *alpha- 0.9285 *alpha3
-1.43 *alpha5 -0.5 *alpha7;
Real p =0.5;
Real rootk = std::sqrt(k);
p+= alpha/rootk;
p+= beta /(k*rootk);
p+= gamma/(k*k*rootk);
// delete next line to get results for j three tree
p+= delta/(k*k*k*rootk);
return p;
}
Joshi4::Joshi4(const ext::shared_ptr<StochasticProcess1D>& process,
Time end,
Size steps,
Real strike)
: BinomialTree<Joshi4>(process, end, (steps % 2) != 0U ? steps : (steps + 1)) {
QL_REQUIRE(strike>0.0, "strike must be positive");
Size oddSteps = (steps % 2) != 0U ? steps : (steps + 1);
Real variance = process->variance(0.0, x0_, end);
Real ermqdt = std::exp(driftPerStep_ + 0.5*variance/oddSteps);
Real d2 = (std::log(x0_/strike) + driftPerStep_*oddSteps ) /
std::sqrt(variance);
pu_ = computeUpProb((oddSteps-1.0)/2.0,d2 );
pd_ = 1.0 - pu_;
Real pdash = computeUpProb((oddSteps-1.0)/2.0,d2+std::sqrt(variance));
up_ = ermqdt * pdash / pu_;
down_ = (ermqdt - pu_ * up_) / (1.0 - pu_);
}
}
|