1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Klaus Spanderen
Copyright (C) 2010 Kakhkhor Abdijalilov
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file lsmbasissystem.cpp
\brief utility classes for longstaff schwartz early exercise Monte Carlo
*/
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/methods/montecarlo/lsmbasissystem.hpp>
#include <numeric>
#include <set>
#include <utility>
namespace QuantLib {
namespace {
// makes typing a little easier
typedef std::vector<std::function<Real(Real)> > VF_R;
typedef std::vector<std::function<Real(Array)> > VF_A;
typedef std::vector<std::vector<Size> > VV;
// pow(x, order)
class MonomialFct {
public:
explicit MonomialFct(Size order): order_(order) {}
Real operator()(const Real x) const {
Real ret = 1.0;
for(Size i=0; i<order_; ++i)
ret *= x;
return ret;
}
private:
const Size order_;
};
/* multiplies [Real -> Real] functors
to create [Array -> Real] functor */
class MultiDimFct {
public:
explicit MultiDimFct(VF_R b) : b_(std::move(b)) {
QL_REQUIRE(!b_.empty(), "zero size basis");
}
Real operator()(const Array& a) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(b_.size()==a.size(), "wrong argument size");
#endif
Real ret = b_[0](a[0]);
for(Size i=1; i<b_.size(); ++i)
ret *= b_[i](a[i]);
return ret;
}
private:
const VF_R b_;
};
// check size and order of tuples
void check_tuples(const VV& v, Size dim, Size order) {
for (const auto& i : v) {
QL_REQUIRE(dim == i.size(), "wrong tuple size");
QL_REQUIRE(order == std::accumulate(i.begin(), i.end(), 0UL), "wrong tuple order");
}
}
// build order N+1 tuples from order N tuples
VV next_order_tuples(const VV& v) {
const Size order = std::accumulate(v[0].begin(), v[0].end(), 0UL);
const Size dim = v[0].size();
check_tuples(v, dim, order);
// the set of unique tuples
std::set<std::vector<Size> > tuples;
std::vector<Size> x;
for(Size i=0; i<dim; ++i) {
// increase i-th value in every tuple by 1
for (const auto& j : v) {
x = j;
x[i] += 1;
tuples.insert(x);
}
}
VV ret(tuples.begin(), tuples.end());
return ret;
}
}
// LsmBasisSystem static methods
VF_R LsmBasisSystem::pathBasisSystem(Size order, PolynomialType type) {
VF_R ret(order+1);
for (Size i=0; i<=order; ++i) {
switch (type) {
case Monomial:
ret[i] = MonomialFct(i);
break;
case Laguerre:
{
GaussLaguerrePolynomial p;
ret[i] = [=](Real x){ return p.weightedValue(i, x); };
}
break;
case Hermite:
{
GaussHermitePolynomial p;
ret[i] = [=](Real x){ return p.weightedValue(i, x); };
}
break;
case Hyperbolic:
{
GaussHyperbolicPolynomial p;
ret[i] = [=](Real x){ return p.weightedValue(i, x); };
}
break;
case Legendre:
{
GaussLegendrePolynomial p;
ret[i] = [=](Real x){ return p.weightedValue(i, x); };
}
break;
case Chebyshev:
{
GaussChebyshevPolynomial p;
ret[i] = [=](Real x){ return p.weightedValue(i, x); };
}
break;
case Chebyshev2nd:
{
GaussChebyshev2ndPolynomial p;
ret[i] = [=](Real x){ return p.weightedValue(i, x); };
}
break;
default:
QL_FAIL("unknown regression type");
}
}
return ret;
}
VF_A LsmBasisSystem::multiPathBasisSystem(Size dim, Size order,
PolynomialType type) {
QL_REQUIRE(dim>0, "zero dimension");
// get single factor basis
VF_R pathBasis = pathBasisSystem(order, type);
VF_A ret;
// 0-th order term
VF_R term(dim, pathBasis[0]);
ret.emplace_back(MultiDimFct(term));
// start with all 0 tuple
VV tuples(1, std::vector<Size>(dim));
// add multi-factor terms
for(Size i=1; i<=order; ++i) {
tuples = next_order_tuples(tuples);
// now we have all tuples of order i
// for each tuple add the corresponding term
for (auto& tuple : tuples) {
for(Size k=0; k<dim; ++k)
term[k] = pathBasis[tuple[k]];
ret.emplace_back(MultiDimFct(term));
}
}
return ret;
}
}
|