1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005 Klaus Spanderen
Copyright (C) 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/processes/stochasticprocessarray.hpp>
#include <ql/math/matrixutilities/pseudosqrt.hpp>
namespace QuantLib {
StochasticProcessArray::StochasticProcessArray(
const std::vector<ext::shared_ptr<StochasticProcess1D> >& processes,
const Matrix& correlation)
: processes_(processes),
sqrtCorrelation_(pseudoSqrt(correlation,SalvagingAlgorithm::Spectral)) {
QL_REQUIRE(!processes.empty(), "no processes given");
QL_REQUIRE(correlation.rows() == processes.size(),
"mismatch between number of processes "
"and size of correlation matrix");
for (auto& process : processes_) {
QL_REQUIRE(process, "null 1-D stochastic process");
registerWith(process);
}
}
Size StochasticProcessArray::size() const {
return processes_.size();
}
Array StochasticProcessArray::initialValues() const {
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->x0();
return tmp;
}
Array StochasticProcessArray::drift(Time t,
const Array& x) const {
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->drift(t, x[i]);
return tmp;
}
Matrix StochasticProcessArray::diffusion(Time t,
const Array& x) const {
Matrix tmp = sqrtCorrelation_;
for (Size i=0; i<size(); ++i) {
Real sigma = processes_[i]->diffusion(t, x[i]);
std::transform(tmp.row_begin(i), tmp.row_end(i),
tmp.row_begin(i),
[=](Real x) -> Real { return x * sigma; });
}
return tmp;
}
Array StochasticProcessArray::expectation(Time t0,
const Array& x0,
Time dt) const {
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->expectation(t0, x0[i], dt);
return tmp;
}
Matrix StochasticProcessArray::stdDeviation(Time t0,
const Array& x0,
Time dt) const {
Matrix tmp = sqrtCorrelation_;
for (Size i=0; i<size(); ++i) {
Real sigma = processes_[i]->stdDeviation(t0, x0[i], dt);
std::transform(tmp.row_begin(i), tmp.row_end(i),
tmp.row_begin(i),
[=](Real x) -> Real { return x * sigma; });
}
return tmp;
}
Matrix StochasticProcessArray::covariance(Time t0,
const Array& x0,
Time dt) const {
Matrix tmp = stdDeviation(t0, x0, dt);
return tmp*transpose(tmp);
}
Array StochasticProcessArray::evolve(
Time t0, const Array& x0, Time dt, const Array& dw) const {
const Array dz = sqrtCorrelation_ * dw;
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->evolve(t0, x0[i], dt, dz[i]);
return tmp;
}
Array StochasticProcessArray::apply(const Array& x0,
const Array& dx) const {
Array tmp(size());
for (Size i=0; i<size(); ++i)
tmp[i] = processes_[i]->apply(x0[i],dx[i]);
return tmp;
}
Time StochasticProcessArray::time(const Date& d) const {
return processes_[0]->time(d);
}
const ext::shared_ptr<StochasticProcess1D>&
StochasticProcessArray::process(Size i) const {
return processes_[i];
}
Matrix StochasticProcessArray::correlation() const {
return sqrtCorrelation_ * transpose(sqrtCorrelation_);
}
}
|