File: globalbootstrap.hpp

package info (click to toggle)
quantlib 1.40-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,768 kB
  • sloc: cpp: 398,987; makefile: 6,574; python: 214; sh: 150; lisp: 86
file content (353 lines) | stat: -rw-r--r-- 15,962 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2019 SoftSolutions! S.r.l.

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file globalbootstrap.hpp
    \brief global bootstrap, with additional restrictions
*/

#ifndef quantlib_global_bootstrap_hpp
#define quantlib_global_bootstrap_hpp

#include <ql/functional.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/termstructures/bootstraphelper.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <algorithm>
#include <utility>

namespace QuantLib {

class AdditionalBootstrapVariables {
  public:
    virtual ~AdditionalBootstrapVariables() = default;
    // Initialize variables to initial guesses and return them.
    virtual Array initialize(bool validData) = 0;
    // Update variables to given values.
    virtual void update(const Array& x) = 0;
};

/*! Global boostrapper, with additional restrictions

  The additionalDates functor must return a set of additional dates to add to the
  interpolation grid. These dates must only depend on the global evaluation date.

  The additionalPenalties functor must yield at least as many values such that

  number of (usual, alive) rate helpers + number of additional values >= number of data points - 1

  (note that the data points contain t=0). These values are treated as additional
  error terms in the optimization. The usual rate helpers return quoteError here.
  All error terms are equally weighted.

  The additionalHelpers are registered with the curve like the usual rate helpers,
  but no pillar dates or error terms are added for them. Pillars and error terms
  have to be added by additionalDates and additionalPenalties.

  The additionalVariables interface manages a set of additional variables to add
  to the optimization. This is useful to optimize model parameters used by rate
  helpers, for example, convexity adjustments for futures. See SimpleQuoteVariables
  for a concrete implementation of this interface.

  WARNING: This class is known to work with Traits Discount, ZeroYield, Forward,
  i.e. the usual IR curves traits in QL. It requires Traits::transformDirect()
  and Traits::transformInverse() to be implemented. Also, check the usage of
  Traits::updateGuess(), Traits::guess() in this class.
*/
template <class Curve> class GlobalBootstrap {
    typedef typename Curve::traits_type Traits;             // ZeroYield, Discount, ForwardRate
    typedef typename Curve::interpolator_type Interpolator; // Linear, LogLinear, ...
    typedef std::function<Array(const std::vector<Time>&, const std::vector<Real>&)>
        AdditionalPenalties;

  public:
    GlobalBootstrap(Real accuracy = Null<Real>(),
                    ext::shared_ptr<OptimizationMethod> optimizer = nullptr,
                    ext::shared_ptr<EndCriteria> endCriteria = nullptr);
    GlobalBootstrap(std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
                    std::function<std::vector<Date>()> additionalDates,
                    AdditionalPenalties additionalPenalties,
                    Real accuracy = Null<Real>(),
                    ext::shared_ptr<OptimizationMethod> optimizer = nullptr,
                    ext::shared_ptr<EndCriteria> endCriteria = nullptr,
                    ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables = nullptr);
    GlobalBootstrap(std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
                    std::function<std::vector<Date>()> additionalDates,
                    std::function<Array()> additionalPenalties,
                    Real accuracy = Null<Real>(),
                    ext::shared_ptr<OptimizationMethod> optimizer = nullptr,
                    ext::shared_ptr<EndCriteria> endCriteria = nullptr,
                    ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables = nullptr);
    void setup(Curve *ts);
    void calculate() const;

  private:
    void initialize() const;
    Curve *ts_;
    Real accuracy_;
    ext::shared_ptr<OptimizationMethod> optimizer_;
    ext::shared_ptr<EndCriteria> endCriteria_;
    mutable std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers_;
    std::function<std::vector<Date>()> additionalDates_;
    AdditionalPenalties additionalPenalties_;
    ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables_;
    mutable bool initialized_ = false, validCurve_ = false;
    mutable Size firstHelper_ = 0, numberHelpers_ = 0;
    mutable Size firstAdditionalHelper_ = 0, numberAdditionalHelpers_ = 0;
};

// template definitions

template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(
    Real accuracy,
    ext::shared_ptr<OptimizationMethod> optimizer,
    ext::shared_ptr<EndCriteria> endCriteria)
: ts_(nullptr), accuracy_(accuracy), optimizer_(std::move(optimizer)),
  endCriteria_(std::move(endCriteria)) {}

template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(
    std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
    std::function<std::vector<Date>()> additionalDates,
    AdditionalPenalties additionalPenalties,
    Real accuracy,
    ext::shared_ptr<OptimizationMethod> optimizer,
    ext::shared_ptr<EndCriteria> endCriteria,
    ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables)
: ts_(nullptr), accuracy_(accuracy), optimizer_(std::move(optimizer)),
  endCriteria_(std::move(endCriteria)), additionalHelpers_(std::move(additionalHelpers)),
  additionalDates_(std::move(additionalDates)), additionalPenalties_(std::move(additionalPenalties)),
  additionalVariables_(std::move(additionalVariables)) {}

template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(
    std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
    std::function<std::vector<Date>()> additionalDates,
    std::function<Array()> additionalPenalties,
    Real accuracy,
    ext::shared_ptr<OptimizationMethod> optimizer,
    ext::shared_ptr<EndCriteria> endCriteria,
    ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables)
: GlobalBootstrap(std::move(additionalHelpers), std::move(additionalDates),
                  additionalPenalties
                    ? [f=std::move(additionalPenalties)](const std::vector<Time>&, const std::vector<Real>&) {
                        return f();
                    }
                    : AdditionalPenalties(),
                  accuracy, std::move(optimizer), std::move(endCriteria),
                  std::move(additionalVariables)) {}

template <class Curve> void GlobalBootstrap<Curve>::setup(Curve *ts) {
    ts_ = ts;
    for (Size j = 0; j < ts_->instruments_.size(); ++j)
        ts_->registerWithObservables(ts_->instruments_[j]);
    for (Size j = 0; j < additionalHelpers_.size(); ++j)
        ts_->registerWithObservables(additionalHelpers_[j]);

    // setup optimizer and EndCriteria
    Real accuracy = accuracy_ != Null<Real>() ? accuracy_ : ts_->accuracy_;
    if (!optimizer_) {
        optimizer_ = ext::make_shared<LevenbergMarquardt>(accuracy, accuracy, accuracy);
    }
    if (!endCriteria_) {
        endCriteria_ = ext::make_shared<EndCriteria>(1000, 10, accuracy, accuracy, accuracy);
    }

    // do not initialize yet: instruments could be invalid here
    // but valid later when bootstrapping is actually required
}

template <class Curve> void GlobalBootstrap<Curve>::initialize() const {

    // ensure helpers are sorted
    std::sort(ts_->instruments_.begin(), ts_->instruments_.end(), detail::BootstrapHelperSorter());
    std::sort(additionalHelpers_.begin(), additionalHelpers_.end(), detail::BootstrapHelperSorter());

    // skip expired helpers
    const Date firstDate = Traits::initialDate(ts_);

    firstHelper_ = 0;
    if (!ts_->instruments_.empty()) {
        while (firstHelper_ < ts_->instruments_.size() && ts_->instruments_[firstHelper_]->pillarDate() <= firstDate)
            ++firstHelper_;
    }
    numberHelpers_ = ts_->instruments_.size() - firstHelper_;

    // skip expired additional helpers
    firstAdditionalHelper_ = 0;
    if (!additionalHelpers_.empty()) {
        while (firstAdditionalHelper_ < additionalHelpers_.size() &&
               additionalHelpers_[firstAdditionalHelper_]->pillarDate() <= firstDate)
            ++firstAdditionalHelper_;
    }
    numberAdditionalHelpers_ = additionalHelpers_.size() - firstAdditionalHelper_;

    // skip expired additional dates
    std::vector<Date> additionalDates;
    if (additionalDates_)
        additionalDates = additionalDates_();
    if (!additionalDates.empty()) {
        additionalDates.erase(
            std::remove_if(additionalDates.begin(), additionalDates.end(),
                           [=](const Date& date) { return date <= firstDate; }),
            additionalDates.end()
        );
    }
    const Size numberAdditionalDates = additionalDates.size();

    QL_REQUIRE(numberHelpers_ + numberAdditionalDates >= Interpolator::requiredPoints - 1,
               "not enough alive instruments (" << numberHelpers_ << ") + additional dates (" << numberAdditionalDates
                                                << ") = " << numberHelpers_ + numberAdditionalDates << " provided, "
                                                << Interpolator::requiredPoints - 1 << " required");

    // calculate dates and times
    std::vector<Date> &dates = ts_->dates_;
    std::vector<Time> &times = ts_->times_;

    // first populate the dates vector and make sure they are sorted and there are no duplicates
    dates.clear();
    dates.push_back(firstDate);
    for (Size j = 0; j < numberHelpers_; ++j)
        dates.push_back(ts_->instruments_[firstHelper_ + j]->pillarDate());
    dates.insert(dates.end(), additionalDates.begin(), additionalDates.end());
    std::sort(dates.begin(), dates.end());
    auto it = std::unique(dates.begin(), dates.end());
    QL_REQUIRE(it == dates.end(), "duplicate dates among alive instruments and additional dates");

    // build times vector
    times.clear();
    for (auto& date : dates)
        times.push_back(ts_->timeFromReference(date));

    // determine maxDate
    Date maxDate = dates.back();
    for (Size j = 0; j < numberHelpers_; ++j) {
        maxDate = std::max(ts_->instruments_[firstHelper_ + j]->latestRelevantDate(), maxDate);
    }
    ts_->maxDate_ = maxDate;

    // set initial guess only if the current curve cannot be used as guess
    if (!validCurve_ || ts_->data_.size() != dates.size()) {
        // ts_->data_[0] is the only relevant item,
        // but reasonable numbers might be needed for the whole data vector
        // because, e.g., of interpolation's early checks
        ts_->data_ = std::vector<Real>(dates.size(), Traits::initialValue(ts_));
        validCurve_ = false;
    }
    initialized_ = true;
}

template <class Curve> void GlobalBootstrap<Curve>::calculate() const {

    // we might have to call initialize even if the curve is initialized
    // and not moving, just because helpers might be date relative and change
    // with evaluation date change.
    // anyway it makes little sense to use date relative helpers with a
    // non-moving curve if the evaluation date changes
    if (!initialized_ || ts_->moving_)
        initialize();

    // setup helpers
    for (Size j = 0; j < numberHelpers_; ++j) {
        const ext::shared_ptr<typename Traits::helper> &helper = ts_->instruments_[firstHelper_ + j];
        // check for valid quote
        QL_REQUIRE(helper->quote()->isValid(), io::ordinal(j + 1)
                                                   << " instrument (maturity: " << helper->maturityDate()
                                                   << ", pillar: " << helper->pillarDate() << ") has an invalid quote");
        // don't try this at home!
        // This call creates helpers, and removes "const".
        // There is a significant interaction with observability.
        helper->setTermStructure(const_cast<Curve *>(ts_));
    }

    // setup additional helpers
    for (Size j = 0; j < numberAdditionalHelpers_; ++j) {
        const ext::shared_ptr<typename Traits::helper> &helper = additionalHelpers_[firstAdditionalHelper_ + j];
        QL_REQUIRE(helper->quote()->isValid(), io::ordinal(j + 1)
                                                   << " additional instrument (maturity: " << helper->maturityDate()
                                                   << ") has an invalid quote");
        helper->setTermStructure(const_cast<Curve *>(ts_));
    }

    // setup interpolation
    if (!validCurve_) {
        ts_->interpolation_ =
            ts_->interpolator_.interpolate(ts_->times_.begin(), ts_->times_.end(), ts_->data_.begin());
    }

    // Setup initial guess. We have guesses for the curve values first (numberPillars),
    // followed by guesses for the additional variables.
    const Size numberPillars = ts_->times_.size() - 1;
    Array additionalGuesses;
    if (additionalVariables_) {
        additionalGuesses = additionalVariables_->initialize(validCurve_);
    }
    Array guess(numberPillars + additionalGuesses.size());
    for (Size i = 0; i < numberPillars; ++i) {
        // just pass zero as the first alive helper, it's not used in the standard QL traits anyway
        // update ts_->data_ since Traits::guess() usually depends on previous values
        Traits::updateGuess(ts_->data_, Traits::guess(i + 1, ts_, validCurve_, 0), i + 1);
        guess[i] = Traits::transformInverse(ts_->data_[i + 1], i + 1, ts_);
    }
    std::copy(additionalGuesses.begin(), additionalGuesses.end(), guess.begin() + numberPillars);

    // setup cost function
    SimpleCostFunction cost([&](const Array& x) {
        // x has the same layout as guess above: the first numberPillars values go into
        // the curve, while the rest are new values for the additional variables.
        for (Size i = 0; i < numberPillars; ++i) {
            Traits::updateGuess(ts_->data_, Traits::transformDirect(x[i], i + 1, ts_), i + 1);
        }
        ts_->interpolation_.update();
        if (additionalVariables_) {
            additionalVariables_->update(Array(x.begin() + numberPillars, x.end()));
        }

        Array additionalErrors;
        if (additionalPenalties_) {
            additionalErrors = additionalPenalties_(ts_->times_, ts_->data_);
        }
        Array result(numberHelpers_ + additionalErrors.size());
        std::transform(ts_->instruments_.begin() + firstHelper_, ts_->instruments_.end(),
                       result.begin(),
                       [](const auto& helper) { return helper->quoteError(); });
        std::copy(additionalErrors.begin(), additionalErrors.end(),
                  result.begin() + numberHelpers_);
        return result;
    });

    // setup problem
    NoConstraint noConstraint;
    Problem problem(cost, noConstraint, guess);

    // run optimization
    EndCriteria::Type endType = optimizer_->minimize(problem, *endCriteria_);

    // check the end criteria
    QL_REQUIRE(EndCriteria::succeeded(endType),
               "global bootstrap failed to minimize to required accuracy: " << endType);

    // set valid flag
    validCurve_ = true;
}

} // namespace QuantLib

#endif