1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2019 SoftSolutions! S.r.l.
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file globalbootstrap.hpp
\brief global bootstrap, with additional restrictions
*/
#ifndef quantlib_global_bootstrap_hpp
#define quantlib_global_bootstrap_hpp
#include <ql/functional.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/termstructures/bootstraphelper.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <algorithm>
#include <utility>
namespace QuantLib {
class AdditionalBootstrapVariables {
public:
virtual ~AdditionalBootstrapVariables() = default;
// Initialize variables to initial guesses and return them.
virtual Array initialize(bool validData) = 0;
// Update variables to given values.
virtual void update(const Array& x) = 0;
};
/*! Global boostrapper, with additional restrictions
The additionalDates functor must return a set of additional dates to add to the
interpolation grid. These dates must only depend on the global evaluation date.
The additionalPenalties functor must yield at least as many values such that
number of (usual, alive) rate helpers + number of additional values >= number of data points - 1
(note that the data points contain t=0). These values are treated as additional
error terms in the optimization. The usual rate helpers return quoteError here.
All error terms are equally weighted.
The additionalHelpers are registered with the curve like the usual rate helpers,
but no pillar dates or error terms are added for them. Pillars and error terms
have to be added by additionalDates and additionalPenalties.
The additionalVariables interface manages a set of additional variables to add
to the optimization. This is useful to optimize model parameters used by rate
helpers, for example, convexity adjustments for futures. See SimpleQuoteVariables
for a concrete implementation of this interface.
WARNING: This class is known to work with Traits Discount, ZeroYield, Forward,
i.e. the usual IR curves traits in QL. It requires Traits::transformDirect()
and Traits::transformInverse() to be implemented. Also, check the usage of
Traits::updateGuess(), Traits::guess() in this class.
*/
template <class Curve> class GlobalBootstrap {
typedef typename Curve::traits_type Traits; // ZeroYield, Discount, ForwardRate
typedef typename Curve::interpolator_type Interpolator; // Linear, LogLinear, ...
typedef std::function<Array(const std::vector<Time>&, const std::vector<Real>&)>
AdditionalPenalties;
public:
GlobalBootstrap(Real accuracy = Null<Real>(),
ext::shared_ptr<OptimizationMethod> optimizer = nullptr,
ext::shared_ptr<EndCriteria> endCriteria = nullptr);
GlobalBootstrap(std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
std::function<std::vector<Date>()> additionalDates,
AdditionalPenalties additionalPenalties,
Real accuracy = Null<Real>(),
ext::shared_ptr<OptimizationMethod> optimizer = nullptr,
ext::shared_ptr<EndCriteria> endCriteria = nullptr,
ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables = nullptr);
GlobalBootstrap(std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
std::function<std::vector<Date>()> additionalDates,
std::function<Array()> additionalPenalties,
Real accuracy = Null<Real>(),
ext::shared_ptr<OptimizationMethod> optimizer = nullptr,
ext::shared_ptr<EndCriteria> endCriteria = nullptr,
ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables = nullptr);
void setup(Curve *ts);
void calculate() const;
private:
void initialize() const;
Curve *ts_;
Real accuracy_;
ext::shared_ptr<OptimizationMethod> optimizer_;
ext::shared_ptr<EndCriteria> endCriteria_;
mutable std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers_;
std::function<std::vector<Date>()> additionalDates_;
AdditionalPenalties additionalPenalties_;
ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables_;
mutable bool initialized_ = false, validCurve_ = false;
mutable Size firstHelper_ = 0, numberHelpers_ = 0;
mutable Size firstAdditionalHelper_ = 0, numberAdditionalHelpers_ = 0;
};
// template definitions
template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(
Real accuracy,
ext::shared_ptr<OptimizationMethod> optimizer,
ext::shared_ptr<EndCriteria> endCriteria)
: ts_(nullptr), accuracy_(accuracy), optimizer_(std::move(optimizer)),
endCriteria_(std::move(endCriteria)) {}
template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(
std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
std::function<std::vector<Date>()> additionalDates,
AdditionalPenalties additionalPenalties,
Real accuracy,
ext::shared_ptr<OptimizationMethod> optimizer,
ext::shared_ptr<EndCriteria> endCriteria,
ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables)
: ts_(nullptr), accuracy_(accuracy), optimizer_(std::move(optimizer)),
endCriteria_(std::move(endCriteria)), additionalHelpers_(std::move(additionalHelpers)),
additionalDates_(std::move(additionalDates)), additionalPenalties_(std::move(additionalPenalties)),
additionalVariables_(std::move(additionalVariables)) {}
template <class Curve>
GlobalBootstrap<Curve>::GlobalBootstrap(
std::vector<ext::shared_ptr<typename Traits::helper> > additionalHelpers,
std::function<std::vector<Date>()> additionalDates,
std::function<Array()> additionalPenalties,
Real accuracy,
ext::shared_ptr<OptimizationMethod> optimizer,
ext::shared_ptr<EndCriteria> endCriteria,
ext::shared_ptr<AdditionalBootstrapVariables> additionalVariables)
: GlobalBootstrap(std::move(additionalHelpers), std::move(additionalDates),
additionalPenalties
? [f=std::move(additionalPenalties)](const std::vector<Time>&, const std::vector<Real>&) {
return f();
}
: AdditionalPenalties(),
accuracy, std::move(optimizer), std::move(endCriteria),
std::move(additionalVariables)) {}
template <class Curve> void GlobalBootstrap<Curve>::setup(Curve *ts) {
ts_ = ts;
for (Size j = 0; j < ts_->instruments_.size(); ++j)
ts_->registerWithObservables(ts_->instruments_[j]);
for (Size j = 0; j < additionalHelpers_.size(); ++j)
ts_->registerWithObservables(additionalHelpers_[j]);
// setup optimizer and EndCriteria
Real accuracy = accuracy_ != Null<Real>() ? accuracy_ : ts_->accuracy_;
if (!optimizer_) {
optimizer_ = ext::make_shared<LevenbergMarquardt>(accuracy, accuracy, accuracy);
}
if (!endCriteria_) {
endCriteria_ = ext::make_shared<EndCriteria>(1000, 10, accuracy, accuracy, accuracy);
}
// do not initialize yet: instruments could be invalid here
// but valid later when bootstrapping is actually required
}
template <class Curve> void GlobalBootstrap<Curve>::initialize() const {
// ensure helpers are sorted
std::sort(ts_->instruments_.begin(), ts_->instruments_.end(), detail::BootstrapHelperSorter());
std::sort(additionalHelpers_.begin(), additionalHelpers_.end(), detail::BootstrapHelperSorter());
// skip expired helpers
const Date firstDate = Traits::initialDate(ts_);
firstHelper_ = 0;
if (!ts_->instruments_.empty()) {
while (firstHelper_ < ts_->instruments_.size() && ts_->instruments_[firstHelper_]->pillarDate() <= firstDate)
++firstHelper_;
}
numberHelpers_ = ts_->instruments_.size() - firstHelper_;
// skip expired additional helpers
firstAdditionalHelper_ = 0;
if (!additionalHelpers_.empty()) {
while (firstAdditionalHelper_ < additionalHelpers_.size() &&
additionalHelpers_[firstAdditionalHelper_]->pillarDate() <= firstDate)
++firstAdditionalHelper_;
}
numberAdditionalHelpers_ = additionalHelpers_.size() - firstAdditionalHelper_;
// skip expired additional dates
std::vector<Date> additionalDates;
if (additionalDates_)
additionalDates = additionalDates_();
if (!additionalDates.empty()) {
additionalDates.erase(
std::remove_if(additionalDates.begin(), additionalDates.end(),
[=](const Date& date) { return date <= firstDate; }),
additionalDates.end()
);
}
const Size numberAdditionalDates = additionalDates.size();
QL_REQUIRE(numberHelpers_ + numberAdditionalDates >= Interpolator::requiredPoints - 1,
"not enough alive instruments (" << numberHelpers_ << ") + additional dates (" << numberAdditionalDates
<< ") = " << numberHelpers_ + numberAdditionalDates << " provided, "
<< Interpolator::requiredPoints - 1 << " required");
// calculate dates and times
std::vector<Date> &dates = ts_->dates_;
std::vector<Time> × = ts_->times_;
// first populate the dates vector and make sure they are sorted and there are no duplicates
dates.clear();
dates.push_back(firstDate);
for (Size j = 0; j < numberHelpers_; ++j)
dates.push_back(ts_->instruments_[firstHelper_ + j]->pillarDate());
dates.insert(dates.end(), additionalDates.begin(), additionalDates.end());
std::sort(dates.begin(), dates.end());
auto it = std::unique(dates.begin(), dates.end());
QL_REQUIRE(it == dates.end(), "duplicate dates among alive instruments and additional dates");
// build times vector
times.clear();
for (auto& date : dates)
times.push_back(ts_->timeFromReference(date));
// determine maxDate
Date maxDate = dates.back();
for (Size j = 0; j < numberHelpers_; ++j) {
maxDate = std::max(ts_->instruments_[firstHelper_ + j]->latestRelevantDate(), maxDate);
}
ts_->maxDate_ = maxDate;
// set initial guess only if the current curve cannot be used as guess
if (!validCurve_ || ts_->data_.size() != dates.size()) {
// ts_->data_[0] is the only relevant item,
// but reasonable numbers might be needed for the whole data vector
// because, e.g., of interpolation's early checks
ts_->data_ = std::vector<Real>(dates.size(), Traits::initialValue(ts_));
validCurve_ = false;
}
initialized_ = true;
}
template <class Curve> void GlobalBootstrap<Curve>::calculate() const {
// we might have to call initialize even if the curve is initialized
// and not moving, just because helpers might be date relative and change
// with evaluation date change.
// anyway it makes little sense to use date relative helpers with a
// non-moving curve if the evaluation date changes
if (!initialized_ || ts_->moving_)
initialize();
// setup helpers
for (Size j = 0; j < numberHelpers_; ++j) {
const ext::shared_ptr<typename Traits::helper> &helper = ts_->instruments_[firstHelper_ + j];
// check for valid quote
QL_REQUIRE(helper->quote()->isValid(), io::ordinal(j + 1)
<< " instrument (maturity: " << helper->maturityDate()
<< ", pillar: " << helper->pillarDate() << ") has an invalid quote");
// don't try this at home!
// This call creates helpers, and removes "const".
// There is a significant interaction with observability.
helper->setTermStructure(const_cast<Curve *>(ts_));
}
// setup additional helpers
for (Size j = 0; j < numberAdditionalHelpers_; ++j) {
const ext::shared_ptr<typename Traits::helper> &helper = additionalHelpers_[firstAdditionalHelper_ + j];
QL_REQUIRE(helper->quote()->isValid(), io::ordinal(j + 1)
<< " additional instrument (maturity: " << helper->maturityDate()
<< ") has an invalid quote");
helper->setTermStructure(const_cast<Curve *>(ts_));
}
// setup interpolation
if (!validCurve_) {
ts_->interpolation_ =
ts_->interpolator_.interpolate(ts_->times_.begin(), ts_->times_.end(), ts_->data_.begin());
}
// Setup initial guess. We have guesses for the curve values first (numberPillars),
// followed by guesses for the additional variables.
const Size numberPillars = ts_->times_.size() - 1;
Array additionalGuesses;
if (additionalVariables_) {
additionalGuesses = additionalVariables_->initialize(validCurve_);
}
Array guess(numberPillars + additionalGuesses.size());
for (Size i = 0; i < numberPillars; ++i) {
// just pass zero as the first alive helper, it's not used in the standard QL traits anyway
// update ts_->data_ since Traits::guess() usually depends on previous values
Traits::updateGuess(ts_->data_, Traits::guess(i + 1, ts_, validCurve_, 0), i + 1);
guess[i] = Traits::transformInverse(ts_->data_[i + 1], i + 1, ts_);
}
std::copy(additionalGuesses.begin(), additionalGuesses.end(), guess.begin() + numberPillars);
// setup cost function
SimpleCostFunction cost([&](const Array& x) {
// x has the same layout as guess above: the first numberPillars values go into
// the curve, while the rest are new values for the additional variables.
for (Size i = 0; i < numberPillars; ++i) {
Traits::updateGuess(ts_->data_, Traits::transformDirect(x[i], i + 1, ts_), i + 1);
}
ts_->interpolation_.update();
if (additionalVariables_) {
additionalVariables_->update(Array(x.begin() + numberPillars, x.end()));
}
Array additionalErrors;
if (additionalPenalties_) {
additionalErrors = additionalPenalties_(ts_->times_, ts_->data_);
}
Array result(numberHelpers_ + additionalErrors.size());
std::transform(ts_->instruments_.begin() + firstHelper_, ts_->instruments_.end(),
result.begin(),
[](const auto& helper) { return helper->quoteError(); });
std::copy(additionalErrors.begin(), additionalErrors.end(),
result.begin() + numberHelpers_);
return result;
});
// setup problem
NoConstraint noConstraint;
Problem problem(cost, noConstraint, guess);
// run optimization
EndCriteria::Type endType = optimizer_->minimize(problem, *endCriteria_);
// check the end criteria
QL_REQUIRE(EndCriteria::succeeded(endType),
"global bootstrap failed to minimize to required accuracy: " << endType);
// set valid flag
validCurve_ = true;
}
} // namespace QuantLib
#endif
|