File: sabr.cpp

package info (click to toggle)
quantlib 1.40-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,768 kB
  • sloc: cpp: 398,987; makefile: 6,574; python: 214; sh: 150; lisp: 86
file content (402 lines) | stat: -rw-r--r-- 17,345 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Ferdinando Ametrano
 Copyright (C) 2006 Mario Pucci
 Copyright (C) 2006 StatPro Italia srl
 Copyright (C) 2015 Peter Caspers
 Copyright (C) 2019 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/termstructures/volatility/sabr.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <ql/math/comparison.hpp>
#include <ql/math/functional.hpp>
#include <ql/errors.hpp>
#include <ql/termstructures/volatility/volatilitytype.hpp>
#if BOOST_VERSION >= 107800
#include <boost/math/special_functions/sign.hpp>
#include <boost/math/tools/cubic_roots.hpp>
#endif

namespace QuantLib {

    Real unsafeSabrLogNormalVolatility(
                              Rate strike,
                              Rate forward,
                              Time expiryTime,
                              Real alpha,
                              Real beta,
                              Real nu,
                              Real rho) {
        const Real oneMinusBeta = 1.0-beta;
        const Real A = std::pow(forward*strike, oneMinusBeta);
        const Real sqrtA= std::sqrt(A);
        Real logM;
        if (!close(forward, strike))
            logM = std::log(forward/strike);
        else {
            const Real epsilon = (forward-strike)/strike;
            logM = epsilon - .5 * epsilon * epsilon ;
        }
        const Real z = (nu/alpha)*sqrtA*logM;
        const Real B = 1.0-2.0*rho*z+z*z;
        const Real C = oneMinusBeta*oneMinusBeta*logM*logM;
        const Real tmp = (std::sqrt(B)+z-rho)/(1.0-rho);
        const Real xx = std::log(tmp);
        const Real D = sqrtA*(1.0+C/24.0+C*C/1920.0);
        const Real d = 1.0 + expiryTime *
            (oneMinusBeta*oneMinusBeta*alpha*alpha/(24.0*A)
                                + 0.25*rho*beta*nu*alpha/sqrtA
                                    +(2.0-3.0*rho*rho)*(nu*nu/24.0));

        Real multiplier;
        // computations become precise enough if the square of z worth
        // slightly more than the precision machine (hence the m)
        static const Real m = 10;
        if (std::fabs(z*z)>QL_EPSILON * m)
            multiplier = z/xx;
        else {
            multiplier = 1.0 - 0.5*rho*z - (3.0*rho*rho-2.0)*z*z/12.0;
        }
        return (alpha/D)*multiplier*d;
    }

    Real unsafeShiftedSabrVolatility(Rate strike,
                              Rate forward,
                              Time expiryTime,
                              Real alpha,
                              Real beta,
                              Real nu,
                              Real rho,
                              Real shift,
                              VolatilityType volatilityType) {
        if (volatilityType == VolatilityType::Normal) {
            return unsafeSabrNormalVolatility(strike + shift, forward + shift, expiryTime, alpha, beta, nu, rho);
        } else {
            return unsafeSabrLogNormalVolatility(strike + shift, forward + shift, expiryTime, alpha, beta, nu, rho);
        }
    }

    Real unsafeSabrNormalVolatility(
        Rate strike, Rate forward, Time expiryTime, Real alpha, Real beta, Real nu, Real rho) {
        const Real oneMinusBeta = 1.0 - beta;
        const Real minusBeta = -1.0 * beta;
        const Real A = std::pow(forward * strike, oneMinusBeta);
        const Real sqrtA = std::sqrt(A);
        Real logM;
        if (!close(forward, strike))
            logM = std::log(forward / strike);
        else {
            const Real epsilon = (forward - strike) / strike;
            logM = epsilon - .5 * epsilon * epsilon;
        }
        const Real z = (nu / alpha) * sqrtA * logM;
        const Real B = 1.0 - 2.0 * rho * z + z * z;
        const Real C = oneMinusBeta * oneMinusBeta * logM * logM;
        const Real D = logM * logM;
        const Real tmp = (std::sqrt(B) + z - rho) / (1.0 - rho);
        const Real xx = std::log(tmp);
        const Real E_1 = (1.0 + D / 24.0 + D * D / 1920.0);
        const Real E_2 = (1.0 + C / 24.0 + C * C / 1920.0);
        const Real E = E_1 / E_2;
        const Real d = 1.0 + expiryTime * (minusBeta * (2 - beta) * alpha * alpha / (24.0 * A) +
                                0.25 * rho * beta * nu * alpha / sqrtA +
                                (2.0 - 3.0 * rho * rho) * (nu * nu / 24.0));

        Real multiplier;
        // computations become precise enough if the square of z worth
        // slightly more than the precision machine (hence the m)
        static const Real m = 10;
        if (std::fabs(z * z) > QL_EPSILON * m)
            multiplier = z / xx;
        else {
            multiplier = 1.0 - 0.5 * rho * z - (3.0 * rho * rho - 2.0) * z * z / 12.0;
        }
        const Real F = alpha * std::pow(forward * strike, beta / 2.0);

       return F * E * multiplier * d;
    }

     Real unsafeSabrVolatility(Rate strike,
                              Rate forward,
                              Time expiryTime,
                              Real alpha,
                              Real beta,
                              Real nu,
                              Real rho,
                              VolatilityType volatilityType) {
        if (volatilityType == VolatilityType::Normal) {
            return unsafeSabrNormalVolatility(strike, forward, expiryTime, alpha, beta, nu, rho);
        } else {
            return unsafeSabrLogNormalVolatility(strike, forward, expiryTime, alpha, beta, nu, rho);
        }
     }

    void validateSabrParameters(Real alpha,
                                Real beta,
                                Real nu,
                                Real rho) {
        QL_REQUIRE(alpha>0.0, "alpha must be positive: "
                              << alpha << " not allowed");
        QL_REQUIRE(beta>=0.0 && beta<=1.0, "beta must be in (0.0, 1.0): "
                                         << beta << " not allowed");
        QL_REQUIRE(nu>=0.0, "nu must be non negative: "
                            << nu << " not allowed");
        QL_REQUIRE(rho*rho<1.0, "rho square must be less than one: "
                                << rho << " not allowed");
    }

    Real sabrVolatility(Rate strike,
                        Rate forward,
                        Time expiryTime,
                        Real alpha,
                        Real beta,
                        Real nu,
                        Real rho,
                        VolatilityType volatilityType) {
        QL_REQUIRE(strike>0.0, "strike must be positive: "
                               << io::rate(strike) << " not allowed");
        QL_REQUIRE(forward>0.0, "at the money forward rate must be "
                   "positive: " << io::rate(forward) << " not allowed");
        QL_REQUIRE(expiryTime>=0.0, "expiry time must be non-negative: "
                                   << expiryTime << " not allowed");
        validateSabrParameters(alpha, beta, nu, rho);
        return unsafeSabrVolatility(strike, forward, expiryTime, alpha, beta, nu, rho,
                                             volatilityType);
    }

    Real shiftedSabrVolatility(Rate strike,
                               Rate forward,
                               Time expiryTime,
                               Real alpha,
                               Real beta,
                               Real nu,
                               Real rho,
                               Real shift,
                               VolatilityType volatilityType) {
        QL_REQUIRE(strike + shift > 0.0, "strike+shift must be positive: "
                   << io::rate(strike) << "+" << io::rate(shift) << " not allowed");
        QL_REQUIRE(forward + shift > 0.0, "at the money forward rate + shift must be "
                   "positive: " << io::rate(forward) << " " << io::rate(shift) << " not allowed");
        QL_REQUIRE(expiryTime>=0.0, "expiry time must be non-negative: "
                                   << expiryTime << " not allowed");
        validateSabrParameters(alpha, beta, nu, rho);
        return unsafeShiftedSabrVolatility(strike, forward, expiryTime,
                                             alpha, beta, nu, rho,shift, volatilityType);
    }

    namespace {
        struct SabrFlochKennedyVolatility {
            Real F, alpha, beta, nu, rho, t;

            Real y(Real k) const {
                return -1.0/(1.0-beta)*(std::pow(F,1-beta)-std::pow(k,1-beta));
            }

            Real Dint(Real k) const {
                return 1/nu*std::log( ( std::sqrt(1+2*rho*nu/alpha*y(k)
                    + squared(nu/alpha*y(k)) )
                    - rho - nu/alpha*y(k) ) / (1-rho) );
            }

            Real D(Real k) const {
                return std::sqrt(alpha*alpha+2*alpha*rho*nu*y(k)
                    + squared(nu*y(k)))*std::pow(k,beta);
            }

            Real omega0(Real k) const {
                return std::log(F/k)/Dint(k);
            }

            Real operator()(Real k) const {
                const Real m = F/k;
                if (m > 1.0025 || m < 0.9975) {
                    return omega0(k)*(1+0.25*rho*nu*alpha*
                       (std::pow(k,beta)-std::pow(F,beta))/(k-F)*t)
                       -omega0(k)/squared(Dint(k))*(std::log(
                           omega0(k)) + 0.5*std::log((F*k/(D(F)*D(k))) ))*t;
                }
                else {
                    return taylorExpansion(k);
                }
            }

            Real taylorExpansion(Real k) const {
                const Real F2 = F*F;
                const Real alpha2 = alpha*alpha;
                const Real rho2 = rho*rho;
                return
                    (alpha*std::pow(F,-3 + beta)*(alpha2*squared(-1 + beta)*std::pow(F,2*beta)*t + 6*alpha*beta*nu*std::pow(F,1 + beta)*rho*t +
                        F2*(24 + nu*nu*(2 - 3*rho2)*t)))/24.0 +
                     (3*alpha2*alpha*std::pow(-1 + beta,3)*std::pow(F,3*beta)*t +
                        3*alpha2*(-1 + beta)*(-1 + 5*beta)*nu*std::pow(F,1 + 2*beta)*rho*t + nu*F2*F*rho*(24 + nu*nu*(-4 + 3*rho2)*t) +
                        alpha*std::pow(F,2 + beta)*(24*(-1 + beta) + nu*nu*(2*(-1 + beta) + 3*(1 + beta)*rho2)*t))/(48.*F2*F2) * (k-F) +
                    (std::pow(F,-5 - beta)*(alpha2*alpha2*std::pow(-1 + beta,3)*(-209 + 119*beta)*std::pow(F,4*beta)*t + 30*alpha2*alpha*(-1 + beta)*(9 + beta*(-37 + 18*beta))*nu*std::pow(F,1 + 3*beta)*rho*t -
                        30*alpha*nu*std::pow(F,3 + beta)*rho*(24 + nu*nu*(-4*(1 + beta) + 3*(1 + 2*beta)*rho2)*t) +
                        10*alpha2*std::pow(F,2 + 2*beta)*(24*(-4 + beta)*(-1 + beta) + nu*nu*(2*(-1 + beta)*(-7 + 4*beta) + 3*(-4 + beta*(-7 + 5*beta))*rho2)*t) +
                        nu*nu*F2*F2*(480 - 720*rho2 + nu*nu*(-64 + 75*rho2*(4 - 3*rho2))*t)))/(2880*alpha) * (k-F)*(k-F);
            }
        };
    }

    Real sabrFlochKennedyVolatility(Rate strike,
                                Rate forward,
                                Time expiryTime,
                                Real alpha,
                                Real beta,
                                Real nu,
                                Real rho) {
        const SabrFlochKennedyVolatility v =
            {forward, alpha, beta, nu, rho, expiryTime};

        return v(strike);
    }


    #if BOOST_VERSION >= 107800

    namespace {

        Real smallest_positive_root(Real c1, Real c2, Real c3, Real c4) {
            auto [r1, r2, r3] = boost::math::tools::cubic_roots(c1, c2, c3, c4);
            if (std::isnan(r3)) {
                // single root (or two equal ones), check that it's positive
                QL_REQUIRE(r1 > 0.0, "no positive root");
                return r1;
            } else {
                // three roots in non-decreasing order, return the first positive one
                QL_REQUIRE(r3 > 0.0, "no positive root");
                return r1 > 0.0 ? r1 : (r2 > 0.0 ? r2 : r3);
            }
        }

    }

    std::array<Real, 4> sabrGuess(Real k_m, Volatility vol_m,
                                  Real k_0, Volatility vol_0,
                                  Real k_p, Volatility vol_p,
                                  Rate forward,
                                  Time expiryTime,
                                  Real beta,
                                  Real shift,
                                  VolatilityType volatilityType) {

        // same variable names as in the equations for ease of reference:
        Real f = forward, b = shift, T = expiryTime;

        // change to log-moneyness

        Real z_m = std::log((k_m + b) / (f + b));
        Real z_0 = std::log((k_0 + b) / (f + b));
        Real z_p = std::log((k_p + b) / (f + b));

        // calculate atm, skew, curvature

        Real w_m = 1 / ((z_m - z_0) * (z_m - z_p));  // eq. (42) in the paper
        Real w_0 = 1 / ((z_0 - z_m) * (z_0 - z_p));  // eq. (43)
        Real w_p = 1 / ((z_p - z_m) * (z_p - z_0));  // eq. (44)

        Real sigma_0 = z_0 * z_p * w_m * vol_m + z_m * z_p * w_0 * vol_0 + z_m * z_0 * w_p * vol_p;         // (39)
        Real sigma_1 = - (z_0 + z_p) * w_m * vol_m - (z_m + z_p) * w_0 * vol_0 - (z_m + z_0) * w_p * vol_p; // (40)
        Real sigma_2 = 2 * w_m * vol_m + 2 * w_0 * vol_0 + 2 * w_p * vol_p;                                 // (41)

        switch (volatilityType) {
          case ShiftedLognormal: {

              // equations (32)

              Real alpha = sigma_0 * std::pow(f + b, 1.0-beta); // NOLINT(clang-analyzer-deadcode.DeadStores)
              Real nu2 =
                  3 * sigma_0 * sigma_2
                  - 0.5 * squared(1-beta) * sigma_0 * sigma_0
                  + 1.5 * squared(2*sigma_1 + (1-beta)*sigma_0);
              Real nu, rho;
              if (nu2 > 0.0) {
                  nu = std::sqrt(nu2);
                  rho = (1/nu) * (2*sigma_1 + (1-beta)*sigma_0);
              } else {
                  rho = boost::math::sign(2*sigma_1 + (1-beta)*sigma_0);
                  nu = (1/rho) * (2*sigma_1 + (1-beta)*sigma_0);
              }

              // coefficients of the polynomial in equation (33)

              Real c1 = squared(1 - beta) * T / (24 * std::pow(f + b, 2 - 2 * beta));
              Real c2 = rho * beta * nu * T / (4 * std::pow(f + b, 1 - beta));
              Real c3 = 1 + ((2 - 3 * rho*rho) / 24) * nu*nu * T;
              Real c4 = - sigma_0 * std::pow(f + b, 1-beta);

              try {
                  alpha = smallest_positive_root(c1, c2, c3, c4);
              } catch (Error&) {}

              return { alpha, beta, nu, rho };
          }
          case Normal: {

              // equations (37)

              Real alpha = sigma_0 * std::pow(f + b, -beta); // NOLINT(clang-analyzer-deadcode.DeadStores)
              Real nu2 = squared(1 / (f + b)) * (
                  3 * sigma_0 * sigma_2
                  - 0.5 * (beta*beta + beta) * (sigma_0*sigma_0)
                  - 3 * sigma_0 * (sigma_1 - 0.5 * beta * sigma_0)
                  + 1.5 * squared(2 * sigma_1 - beta * sigma_0)
              );
              Real nu, rho;
              if (nu2 > 0.0) {
                  nu = std::sqrt(nu2);
                  rho = (1 / (nu * (f + b))) * (2 * sigma_1 - beta * sigma_0);
              } else {
                  rho = boost::math::sign((1 / (f + b)) * (2 * sigma_1 - beta * sigma_0));
                  nu = (1 / (rho * (f + b))) * (2 * sigma_1 - beta * sigma_0);
              }

              // coefficients of the polynomial in equation (38)

              Real c1 = (beta * beta - 2 * beta) * T / (24 * std::pow(f + b, 2 - 2 * beta));
              Real c2 = rho * beta * nu * T / (4 * std::pow(f + b, 1 - beta));
              Real c3 = 1 + ((2 - 3 * rho*rho) / 24) * nu*nu * T;
              Real c4 = - sigma_0 * std::pow(f + b, -beta);

              try {
                  alpha = smallest_positive_root(c1, c2, c3, c4);
              } catch (Error&) {}

              return { alpha, beta, nu, rho };
          }
          default:
            QL_FAIL("unknown volatility type: " << Integer(volatilityType));
        }
    }

    #else

    std::array<Real, 4> sabrGuess(Real, Volatility,
                                  Real, Volatility,
                                  Real, Volatility,
                                  Rate,
                                  Time,
                                  Real,
                                  Real,
                                  VolatilityType) {
        QL_FAIL("Boost 1.78 or later is required for the implementation of this functionality");
    }

    #endif

}