File: smilesection.cpp

package info (click to toggle)
quantlib 1.40-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,768 kB
  • sloc: cpp: 398,987; makefile: 6,574; python: 214; sh: 150; lisp: 86
file content (144 lines) | stat: -rw-r--r-- 6,287 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Mario Pucci
 Copyright (C) 2013, 2015 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/comparison.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/settings.hpp>
#include <ql/termstructures/volatility/smilesection.hpp>
#include <utility>

using std::sqrt;

namespace QuantLib {

    void SmileSection::update() {
        if (isFloating_) {
            referenceDate_ = Settings::instance().evaluationDate();
            initializeExerciseTime();
        }
    }

    void SmileSection::initializeExerciseTime() const {
        QL_REQUIRE(exerciseDate_>=referenceDate_,
                   "expiry date (" << exerciseDate_ <<
                   ") must be greater than reference date (" <<
                   referenceDate_ << ")");
        exerciseTime_ = dc_.yearFraction(referenceDate_, exerciseDate_);
    }

    SmileSection::SmileSection(const Date& d,
                               DayCounter dc,
                               const Date& referenceDate,
                               const VolatilityType type,
                               const Rate shift)
    : exerciseDate_(d), dc_(std::move(dc)), volatilityType_(type), shift_(shift) {
        isFloating_ = referenceDate==Date();
        if (isFloating_) {
            registerWith(Settings::instance().evaluationDate());
            referenceDate_ = Settings::instance().evaluationDate();
        } else
            referenceDate_ = referenceDate;
        SmileSection::initializeExerciseTime();
    }

    SmileSection::SmileSection(Time exerciseTime,
                               DayCounter dc,
                               const VolatilityType type,
                               const Rate shift)
    : isFloating_(false), dc_(std::move(dc)), exerciseTime_(exerciseTime), volatilityType_(type),
      shift_(shift) {
        QL_REQUIRE(exerciseTime_>=0.0,
                   "expiry time must be positive: " <<
                   exerciseTime_ << " not allowed");
    }

    Real SmileSection::optionPrice(Rate strike,
                                   Option::Type type,
                                   Real discount) const {
        Real atm = atmLevel();
        QL_REQUIRE(atm != Null<Real>(),
                   "smile section must provide atm level to compute option price");
        // if lognormal or shifted lognormal,
        // for strike at -shift, return option price even if outside
        // minstrike, maxstrike interval
        if (volatilityType() == ShiftedLognormal)
            return blackFormula(type,strike,atm, std::fabs(strike+shift()) < QL_EPSILON ?
                            0.2 : Real(sqrt(variance(strike))),discount,shift());
        else
            return bachelierBlackFormula(type,strike,atm,sqrt(variance(strike)),discount);
    }

    Real SmileSection::digitalOptionPrice(Rate strike,
                                          Option::Type type,
                                          Real discount,
                                          Real gap) const {
        Real m = volatilityType() == ShiftedLognormal ? Real(-shift()) : -QL_MAX_REAL;
        Real kl = std::max(strike-gap/2.0,m);
        Real kr = kl+gap;
        return (type==Option::Call ? 1.0 : -1.0) *
            (optionPrice(kl,type,discount)-optionPrice(kr,type,discount)) / gap;
    }

    Real SmileSection::density(Rate strike, Real discount, Real gap) const {
        Real m = volatilityType() == ShiftedLognormal ? Real(-shift()) : -QL_MAX_REAL;
        Real kl = std::max(strike-gap/2.0,m);
        Real kr = kl+gap;
        return (digitalOptionPrice(kl,Option::Call,discount,gap) -
                digitalOptionPrice(kr,Option::Call,discount,gap)) / gap;
    }

    Real SmileSection::vega(Rate strike, Real discount) const {
        Real atm = atmLevel();
        QL_REQUIRE(atm != Null<Real>(),
                   "smile section must provide atm level to compute option vega");
        if (volatilityType() == ShiftedLognormal)
            return blackFormulaVolDerivative(strike,atmLevel(),
                                             sqrt(variance(strike)),
                                             exerciseTime(),discount,shift())*0.01;
        else
            QL_FAIL("vega for normal smilesection not yet implemented");
    }

    Real SmileSection::volatility(Rate strike, VolatilityType volatilityType,
                                  Real shift) const {
        if(volatilityType == volatilityType_ && close(shift,this->shift()))
            return volatility(strike);
        Real atm = atmLevel();
        QL_REQUIRE(atm != Null<Real>(),
                   "smile section must provide atm level to compute converted volatilties");
        Option::Type type = strike >= atm ? Option::Call : Option::Put;
        Real premium = optionPrice(strike,type);
        Real premiumAtm = optionPrice(atm,type);
        if (volatilityType == ShiftedLognormal) {
            try {
                return blackFormulaImpliedStdDev(type, strike, atm, premium,
                                                 1.0, shift) /
                       std::sqrt(exerciseTime());
            } catch(...) {
                return blackFormulaImpliedStdDevChambers(
                    type, strike, atm, premium, premiumAtm, 1.0, shift) /
                       std::sqrt(exerciseTime());
            }
        } else {
                return bachelierBlackFormulaImpliedVol(type, strike, atm,
                                                       exerciseTime(), premium);
            }
    }
}