File: overnightindexedcouponpricer.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (356 lines) | stat: -rw-r--r-- 16,778 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Roland Lichters
 Copyright (C) 2009 Ferdinando Ametrano
 Copyright (C) 2014 Peter Caspers
 Copyright (C) 2016 Stefano Fondi
 Copyright (C) 2017 Joseph Jeisman
 Copyright (C) 2017 Fabrice Lecuyer

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/cashflows/overnightindexedcouponpricer.hpp>
#include <utility>

namespace QuantLib {

    namespace {

        Size determineNumberOfFixings(const std::vector<Date>& interestDates,
                                      const Date& date,
                                      bool applyObservationShift) {
            Size n = std::lower_bound(interestDates.begin(), interestDates.end(), date) -
                     interestDates.begin();
            // When using the observation shift, it may happen that
            // that the end of accrual period will fall later than the last
            // interest date. In which case, n will be equal to the number of
            // interest dates, while we know that the number of fixing dates is
            // always one less than the number of interest dates.
            return n == interestDates.size() && applyObservationShift ? n - 1 : n;
        }
    }

    OvernightIndexedCouponPricer::OvernightIndexedCouponPricer(
            Handle<OptionletVolatilityStructure> v,
            const bool effectiveVolatilityInput)
        : capletVol_(std::move(v)),
          effectiveVolatilityInput_(effectiveVolatilityInput) {
        registerWith(capletVol_);
    }

    void OvernightIndexedCouponPricer::initialize(const FloatingRateCoupon& coupon) {
        if (const auto *cfCoupon = dynamic_cast<const CappedFlooredOvernightIndexedCoupon*>(&coupon)) {
            auto *underlying = cfCoupon->underlying().get();
            QL_REQUIRE(underlying, "OvernightIndexedCouponPricer: CappedFlooredOvernightIndexedCoupon underlying coupon not defined");
            coupon_ = cfCoupon->underlying().get();
        } else if (const auto *onCoupon = dynamic_cast<const OvernightIndexedCoupon*>(&coupon)) {
            coupon_ = onCoupon;
        } else {
            QL_FAIL("OvernightIndexedCouponPricer: unsupported coupon type");
        }
    }

    bool OvernightIndexedCouponPricer::effectiveVolatilityInput() const {
        return effectiveVolatilityInput_;
    }

    Real OvernightIndexedCouponPricer::effectiveCapletVolatility() const {
        return effectiveCapletVolatility_;
    }

    Real OvernightIndexedCouponPricer::effectiveFloorletVolatility() const {
        return effectiveFloorletVolatility_;
    }
    
    CompoundingOvernightIndexedCouponPricer::CompoundingOvernightIndexedCouponPricer(
            Handle<OptionletVolatilityStructure> v,
            const bool effectiveVolatilityInput)
        : OvernightIndexedCouponPricer(std::move(v), effectiveVolatilityInput) {}

    Rate CompoundingOvernightIndexedCouponPricer::swapletRate() const {
        auto [swapletRate, effectiveSpread, effectiveIndexFixing] = compute(coupon_->accrualEndDate());
        swapletRate_ = swapletRate;
        effectiveSpread_ = effectiveSpread;
        effectiveIndexFixing_ = effectiveIndexFixing;
        return swapletRate;
    }

    Rate CompoundingOvernightIndexedCouponPricer::averageRate(const Date& date) const {
        auto [rate, effectiveSpread, effectiveIndexFixing] = compute(date);
        return rate;
    }

    Rate CompoundingOvernightIndexedCouponPricer::effectiveSpread() const {
        auto [r, effectiveSpread, effectiveIndexFixing] = compute(coupon_->accrualEndDate());
        effectiveSpread_ = effectiveSpread;
        return effectiveSpread_;
    }

    Rate CompoundingOvernightIndexedCouponPricer::effectiveIndexFixing() const {
        auto [r, effectiveSpread, effectiveIndexFixing] = compute(coupon_->accrualEndDate());
        effectiveIndexFixing_ = effectiveIndexFixing;
        return effectiveIndexFixing_;
    }

    std::tuple<Rate, Spread, Rate> CompoundingOvernightIndexedCouponPricer::compute(const Date& date) const {
	    const Date today = Settings::instance().evaluationDate();

        const ext::shared_ptr<OvernightIndex> index = ext::dynamic_pointer_cast<OvernightIndex>(coupon_->index());
        const auto& pastFixings = index->timeSeries();

        const auto& fixingDates = coupon_->fixingDates();
        const auto& valueDates = coupon_->valueDates();
        const auto& interestDates = coupon_->interestDates();
        const auto& dt = coupon_->dt();
        const bool applyObservationShift = coupon_->applyObservationShift();
	    Real couponSpread = coupon_->spread();

        Size i = 0;
        const Size n = determineNumberOfFixings(interestDates, date, applyObservationShift);

        Real compoundFactor = 1.0, compoundFactorWithoutSpread = 1.0;

        // already fixed part
        while (i < n && fixingDates[i] < today) {
            // rate must have been fixed
            Rate fixing = pastFixings[fixingDates[i]];
            QL_REQUIRE(fixing != Null<Real>(),
                       "Missing " << index->name() << " fixing for " << fixingDates[i]);
            Time span = (date >= interestDates[i + 1] ?
                             dt[i] :
                             index->dayCounter().yearFraction(interestDates[i], date));
            if (coupon_->compoundSpreadDaily()) {
                compoundFactorWithoutSpread *= (1.0 + fixing * span);
                fixing += coupon_->spread();
            }
            compoundFactor *= (1.0 + fixing * span);
            ++i;
        }

        // today is a border case
        if (i < n && fixingDates[i] == today) {
            // might have been fixed
            try {
                Rate fixing = pastFixings[fixingDates[i]];
                if (fixing != Null<Real>()) {
                    Time span = (date >= interestDates[i + 1] ?
                                     dt[i] :
                                     index->dayCounter().yearFraction(interestDates[i], date));
                    if (coupon_->compoundSpreadDaily()) {
                        compoundFactorWithoutSpread *= (1.0 + fixing * span);
                        fixing += coupon_->spread();
                    }
                    compoundFactor *= (1.0 + fixing * span);
                    ++i;
                } else {
                    ; // fall through and forecast
                }
            } catch (Error&) {
                ; // fall through and forecast
            }
        }

        // forward part using telescopic property in order
        // to avoid the evaluation of multiple forward fixings
        // where possible.
        if (i < n) {
            const Handle<YieldTermStructure> curve = index->forwardingTermStructure();
            QL_REQUIRE(!curve.empty(),
                       "null term structure set to this instance of " << index->name());

            const auto effectiveRate = [&index, &fixingDates, &date, &interestDates,
                                        &dt, &couponSpread](Size position, bool compoundSpreadDaily) {
                Rate fixing = index->fixing(fixingDates[position]);
                Time span = (date >= interestDates[position + 1] ?
                                 dt[position] :
                                 index->dayCounter().yearFraction(interestDates[position], date));
                Spread spreadToAdd = compoundSpreadDaily ? couponSpread : 0.0;
                return span * (fixing + spreadToAdd);
            };

            if (!coupon_->canApplyTelescopicFormula()) {
                // With lookback applied, the telescopic formula cannot be used,
                // we need to project each fixing in the coupon.
                // Only in one particular case when observation shift is used and
                // no intrinsic index fixing delay is applied, the telescopic formula
                // holds, because regardless of the fixing delay in the coupon,
                // in such configuration value dates will be equal to interest dates.
                // A potential lockout, which may occur in tandem with a lookback
                // setting, will be handled automatically based on fixing dates.
                // Same applies to a case when accrual calculation date does or
                // does not occur on an interest date.
                while (i < n) {
		            compoundFactorWithoutSpread *= (1.0 + effectiveRate(i, false));
                    compoundFactor *= (1.0 + effectiveRate(i, coupon_->compoundSpreadDaily()));
                    ++i;
                }
            } else {
                // No lookback, we can partially apply the telescopic formula.
                // But we need to make a correction for a potential lockout.
                const Size nLockout = n - coupon_->lockoutDays();
                const bool isLockoutApplied = coupon_->lockoutDays() > 0;

                // Lockout could already start at or before i.
                // In such case the ratio of discount factors will be equal to 1.
                const DiscountFactor startDiscount =
                    curve->discount(valueDates[std::min<Size>(nLockout, i)]);
                if (interestDates[n] == date || isLockoutApplied) {
                    // telescopic formula up to potential lockout dates.
                    const DiscountFactor endDiscount =
                        curve->discount(valueDates[std::min<Size>(nLockout, n)]);
                    compoundFactor *= startDiscount / endDiscount;
                    compoundFactorWithoutSpread *= startDiscount / endDiscount;
                    // For the lockout periods the telescopic formula does not apply.
                    // The value dates (at which the projection is calculated) correspond
                    // to the locked-out fixing, while the interest dates (at which the
                    // interest over that fixing is accrued) are not fixed at lockout,
                    // hence they do not cancel out.
                    i = std::max(nLockout, i);

                    // With no lockout, the loop is skipped because i = n.
                    while (i < n) {
                        compoundFactorWithoutSpread *= (1.0 + effectiveRate(i, false));
                        compoundFactor *= (1.0 + effectiveRate(i, coupon_->compoundSpreadDaily()));
                        ++i;
                    }
                } else {
                    // No lockout and date is different than last interest date.
                    // The last fixing is not used for its full period (the date is between
                    // its start and end date).  We can use the telescopic formula until the
                    // previous date, then we'll add the missing bit.
                    const DiscountFactor endDiscount = curve->discount(valueDates[n - 1]);
                    compoundFactor *= startDiscount / endDiscount;
                    compoundFactorWithoutSpread *= startDiscount / endDiscount;
                    compoundFactor *= (1.0 + effectiveRate(n - 1, coupon_->compoundSpreadDaily()));
                    compoundFactorWithoutSpread *= (1.0 + effectiveRate(n - 1, false));
                }
            }
        }

        const Rate tau = index->dayCounter().yearFraction(valueDates.front(), valueDates.back());
        const Rate rate = (compoundFactor - 1.0) / coupon_->accruedPeriod(date);
        Rate swapletRate = coupon_->gearing() * rate;
        Spread effectiveSpread;
        Rate effectiveIndexFixing;
        
        if (!coupon_->compoundSpreadDaily()) {
            swapletRate += coupon_->spread();
            effectiveSpread = coupon_->spread();
            effectiveIndexFixing = rate;
        } else {
            effectiveSpread = rate - (compoundFactorWithoutSpread - 1.0) / tau;
            effectiveIndexFixing = rate - effectiveSpread;
        }

        return std::make_tuple(swapletRate, effectiveSpread, effectiveIndexFixing);
    }

    Rate ArithmeticAveragedOvernightIndexedCouponPricer::swapletRate() const {

        ext::shared_ptr<OvernightIndex> index =
            ext::dynamic_pointer_cast<OvernightIndex>(coupon_->index());

        const auto& fixingDates = coupon_->fixingDates();
        const auto& dt = coupon_->dt();

        Size n = dt.size(), i = 0;

        Real accumulatedRate = 0.0;

        const auto& pastFixings = index->timeSeries();

        // already fixed part
        Date today = Settings::instance().evaluationDate();
        while (i < n && fixingDates[i] < today) {
            // rate must have been fixed
            Rate pastFixing = pastFixings[fixingDates[i]];
            QL_REQUIRE(pastFixing != Null<Real>(),
                       "Missing " << index->name() << " fixing for " << fixingDates[i]);
            accumulatedRate += pastFixing * dt[i];
            ++i;
        }

        // today is a border case
        if (i < n && fixingDates[i] == today) {
            // might have been fixed
            try {
                Rate pastFixing = pastFixings[fixingDates[i]];
                if (pastFixing != Null<Real>()) {
                    accumulatedRate += pastFixing * dt[i];
                    ++i;
                } else {
                    ; // fall through and forecast
                }
            } catch (Error&) {
                ; // fall through and forecast
            }
        }

        /* forward part using telescopic property in order
        to avoid the evaluation of multiple forward fixings
        (approximation proposed by Katsumi Takada)*/
        if (byApprox_ && i < n) {
            Handle<YieldTermStructure> curve = index->forwardingTermStructure();
            QL_REQUIRE(!curve.empty(),
                       "null term structure set to this instance of " << index->name());

            const auto& dates = coupon_->valueDates();
            DiscountFactor startDiscount = curve->discount(dates[i]);
            DiscountFactor endDiscount = curve->discount(dates[n]);

            accumulatedRate +=
                log(startDiscount / endDiscount) -
                convAdj1(curve->timeFromReference(dates[i]), curve->timeFromReference(dates[n])) -
                convAdj2(curve->timeFromReference(dates[i]), curve->timeFromReference(dates[n]));
        }
        // otherwise
        else if (i < n) {
            Handle<YieldTermStructure> curve = index->forwardingTermStructure();
            QL_REQUIRE(!curve.empty(),
                       "null term structure set to this instance of " << index->name());

            const auto& dates = coupon_->valueDates();
            Time te = curve->timeFromReference(dates[n]);
            while (i < n) {
                // forcast fixing
                Rate forecastFixing = index->fixing(fixingDates[i]);
                Time ti1 = curve->timeFromReference(dates[i]);
                Time ti2 = curve->timeFromReference(dates[i + 1]);
                /*convexity adjustment due to payment dalay of each
                overnight fixing, supposing an Hull-White short rate model*/
                Real convAdj = exp(
                    0.5 * pow(vol_, 2.0) / pow(mrs_, 3.0) * (exp(2 * mrs_ * ti1) - 1) *
                    (exp(-mrs_ * ti2) - exp(-mrs_ * te)) * (exp(-mrs_ * ti2) - exp(-mrs_ * ti1)));
                accumulatedRate += convAdj * (1 + forecastFixing * dt[i]) - 1;
                ++i;
            }
        }

        Rate rate = accumulatedRate / coupon_->accrualPeriod();
        return coupon_->gearing() * rate + coupon_->spread();
    }

    Real ArithmeticAveragedOvernightIndexedCouponPricer::convAdj1(Time ts, Time te) const {
        return vol_ * vol_ / (4.0 * pow(mrs_, 3.0)) * (1.0 - exp(-2.0 * mrs_ * ts)) *
               pow((1.0 - exp(-mrs_ * (te - ts))), 2.0);
    }

    Real ArithmeticAveragedOvernightIndexedCouponPricer::convAdj2(Time ts, Time te) const {
        return vol_ * vol_ / (2.0 * pow(mrs_, 2.0)) *
               ((te - ts) - pow(1.0 - exp(-mrs_ * (te - ts)), 2.0) / mrs_ -
                (1.0 - exp(-2.0 * mrs_ * (te - ts))) / (2.0 * mrs_));
    }
}