File: discretizeddoublebarrieroption.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (232 lines) | stat: -rw-r--r-- 9,880 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2015 Thema Consulting SA

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/experimental/barrieroption/discretizeddoublebarrieroption.hpp>
#include <vector>

namespace QuantLib {

    DiscretizedDoubleBarrierOption::DiscretizedDoubleBarrierOption(
                                         const DoubleBarrierOption::arguments& args,
                                         const StochasticProcess& process,
                                         const TimeGrid& grid)
    : arguments_(args), vanilla_(arguments_, process, grid)  {
        QL_REQUIRE(!args.exercise->dates().empty(), "specify at least one stopping date");

        stoppingTimes_.resize(args.exercise->dates().size());
        for (Size i=0; i<stoppingTimes_.size(); ++i) {
            stoppingTimes_[i] =
                process.time(args.exercise->date(i));
            if (!grid.empty()) {
                // adjust to the given grid
                stoppingTimes_[i] = grid.closestTime(stoppingTimes_[i]);
            }
        }
    }

    void DiscretizedDoubleBarrierOption::reset(Size size) {
        vanilla_.initialize(method(), time());
        values_ = Array(size, 0.0);
        adjustValues();
    }

    void DiscretizedDoubleBarrierOption::postAdjustValuesImpl() {
        if (arguments_.barrierType!=DoubleBarrier::KnockOut) {
            vanilla_.rollback(time());
        }
        Array grid = method()->grid(time());
        checkBarrier(values_, grid);
    }

    void DiscretizedDoubleBarrierOption::checkBarrier(Array &optvalues, const Array &grid) const {

        Time now = time();
        bool endTime = isOnTime(stoppingTimes_.back());
        bool stoppingTime = false;         
        switch (arguments_.exercise->type()) {
          case Exercise::American:
            if (now <= stoppingTimes_[1] &&
                now >= stoppingTimes_[0])
                stoppingTime = true;
            break;
          case Exercise::European:
            if (isOnTime(stoppingTimes_[0]))
                stoppingTime = true;
            break;
          case Exercise::Bermudan:
              for (Real i : stoppingTimes_) {
                  if (isOnTime(i)) {
                      stoppingTime = true;
                      break;
                  }
              }
            break;
          default:
            QL_FAIL("invalid option type");
        }
        for (Size j=0; j<optvalues.size(); j++) {
            switch (arguments_.barrierType) {
              case DoubleBarrier::KnockIn:
                  if (grid[j] <= arguments_.barrier_lo) {
                     // knocked in dn
                     if (stoppingTime) {
                         optvalues[j] = std::max(vanilla()[j],
                                      (*arguments_.payoff)(grid[j]));
                     }
                     else
                         optvalues[j] = vanilla()[j]; 
                  }
                  else if (grid[j] >= arguments_.barrier_hi) {
                     // knocked in up
                     if (stoppingTime) {
                         optvalues[j] = std::max(vanilla()[j],
                                      (*arguments_.payoff)(grid[j]));
                     }
                     else
                         optvalues[j] = vanilla()[j]; 
                  }
                  else if (endTime)
                      optvalues[j] = arguments_.rebate;
                  break;
              case DoubleBarrier::KnockOut:
                  if (grid[j] <= arguments_.barrier_lo)
                      optvalues[j] = arguments_.rebate; // knocked out lo
                  else if (grid[j] >= arguments_.barrier_hi)
                     optvalues[j] = arguments_.rebate; // knocked out hi
                  else if (stoppingTime)
                      optvalues[j] = std::max(optvalues[j],
                                     (*arguments_.payoff)(grid[j]));
                  break;
              case DoubleBarrier::KIKO:
                  // low barrier is KI, high is KO
                  if (grid[j] <= arguments_.barrier_lo) {
                     // knocked in dn
                     if (stoppingTime) {
                         optvalues[j] = std::max(vanilla()[j],
                                      (*arguments_.payoff)(grid[j]));
                     }
                     else
                         optvalues[j] = vanilla()[j];
                  }
                  else if (grid[j] >= arguments_.barrier_hi)
                     optvalues[j] = arguments_.rebate; // knocked out hi
                  else if (endTime)
                      optvalues[j] = arguments_.rebate;
                  break;
              case DoubleBarrier::KOKI:
                  // low barrier is KO, high is KI
                  if (grid[j] <= arguments_.barrier_lo)
                      optvalues[j] = arguments_.rebate; // knocked out lo
                  else if (grid[j] >= arguments_.barrier_hi) {
                     // knocked in up
                     if (stoppingTime) {
                         optvalues[j] = std::max(vanilla()[j],
                                      (*arguments_.payoff)(grid[j]));
                     }
                     else
                         optvalues[j] = vanilla()[j];
                  }
                  else if (endTime)
                      optvalues[j] = arguments_.rebate;
                  break;
              default:
                  QL_FAIL("invalid barrier type");
            }
        }
    }



    DiscretizedDermanKaniDoubleBarrierOption::DiscretizedDermanKaniDoubleBarrierOption(
                                         const DoubleBarrierOption::arguments& args,
                                         const StochasticProcess& process,
                                         const TimeGrid& grid)
    : unenhanced_(args, process, grid) {
    }

    void DiscretizedDermanKaniDoubleBarrierOption::reset(Size size) {
        unenhanced_.initialize(method(), time());
        values_ = Array(size, 0.0);
        adjustValues();
    }

    void DiscretizedDermanKaniDoubleBarrierOption::postAdjustValuesImpl() {
        unenhanced_.rollback(time());

        Array grid = method()->grid(time());
        unenhanced_.checkBarrier(values_, grid); // compute payoffs
        adjustBarrier(values_, grid);
    }

    void DiscretizedDermanKaniDoubleBarrierOption::adjustBarrier(Array &optvalues, const Array &grid) {
        Real barrier_lo = unenhanced_.arguments().barrier_lo;
        Real barrier_hi = unenhanced_.arguments().barrier_hi;
        Real rebate = unenhanced_.arguments().rebate;
        switch (unenhanced_.arguments().barrierType) {
           case DoubleBarrier::KnockIn:
              for (Size j=0; j<optvalues.size()-1; ++j) {
                  if (grid[j]<=barrier_lo && grid[j+1] > barrier_lo) {
                     // grid[j+1] above barrier_lo, grid[j] under (in),
                     // interpolate optvalues[j+1]
                     Real ltob = (barrier_lo-grid[j]);
                     Real htob = (grid[j+1]-barrier_lo);
                     Real htol = (grid[j+1]-grid[j]);
                     Real u1 = unenhanced_.values()[j+1];
                     Real t1 = unenhanced_.vanilla()[j+1];
                     optvalues[j+1] = std::max(0.0, (ltob*t1+htob*u1)/htol); // derman std
                  }
                  else if (grid[j] < barrier_hi && grid[j+1] >= barrier_hi) {
                     // grid[j+1] above barrier_hi (in), grid[j] under, 
                     // interpolate optvalues[j]
                     Real ltob = (barrier_hi-grid[j]);
                     Real htob = (grid[j+1]-barrier_hi);
                     Real htol = (grid[j+1]-grid[j]);
                     Real u = unenhanced_.values()[j];
                     Real t = unenhanced_.vanilla()[j];
                     optvalues[j] = std::max(0.0, (ltob*u+htob*t)/htol); // derman std
                  }
              }
              break;
           case DoubleBarrier::KnockOut:
              for (Size j=0; j<optvalues.size()-1; ++j) {
                  if (grid[j]<=barrier_lo && grid[j+1] > barrier_lo) {
                     // grid[j+1] above barrier_lo, grid[j] under (out),
                     // interpolate optvalues[j+1]
                     Real a = (barrier_lo-grid[j])*rebate;
                     Real b = (grid[j+1]-barrier_lo)*unenhanced_.values()[j+1];
                     Real c = (grid[j+1]-grid[j]);
                     optvalues[j+1] = std::max(0.0, (a+b)/c);
                  }
                  else if (grid[j] < barrier_hi && grid[j+1] >= barrier_hi) {
                     // grid[j+1] above barrier_hi (out), grid[j] under, 
                     // interpolate optvalues[j]
                     Real a = (barrier_hi-grid[j])*unenhanced_.values()[j];
                     Real b = (grid[j+1]-barrier_hi)*rebate;
                     Real c = (grid[j+1]-grid[j]);
                     optvalues[j] = std::max(0.0, (a+b)/c);
                  }
              }
              break;
           default:
              QL_FAIL("unsupported barrier type");
              break;
        }
    }

}