1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2018 Sebastian Schlenkrich
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file tenoroptionletvts.cpp
\brief caplet volatility term structure based on volatility transformation
*/
#include <ql/exercise.hpp>
#include <ql/experimental/basismodels/tenoroptionletvts.hpp>
#include <ql/indexes/iborindex.hpp>
#include <ql/math/rounding.hpp>
#include <ql/pricingengines/swap/discountingswapengine.hpp>
#include <ql/time/dategenerationrule.hpp>
#include <ql/time/schedule.hpp>
#include <utility>
namespace QuantLib {
TenorOptionletVTS::TenorOptionletVTS(const Handle<OptionletVolatilityStructure>& baseVTS,
ext::shared_ptr<IborIndex> baseIndex,
ext::shared_ptr<IborIndex> targIndex,
ext::shared_ptr<CorrelationStructure> correlation)
: OptionletVolatilityStructure(baseVTS->referenceDate(),
baseVTS->calendar(),
baseVTS->businessDayConvention(),
baseVTS->dayCounter()),
baseVTS_(baseVTS), baseIndex_(std::move(baseIndex)), targIndex_(std::move(targIndex)),
correlation_(std::move(correlation)) {
QL_REQUIRE(baseIndex_->tenor().frequency() % targIndex_->tenor().frequency() == 0,
"Base index frequency must be a multiple of target tenor frequency");
}
TenorOptionletVTS::TenorOptionletSmileSection::TenorOptionletSmileSection(
const TenorOptionletVTS& volTS, const Time optionTime)
: SmileSection(optionTime, volTS.baseVTS_->dayCounter(), Normal, 0.0),
correlation_(volTS.correlation_) {
// we assume that long (target) tenor is a multiple of short (base) tenor
// first we need the long tenor start and end date
Real oneDayAsYear =
volTS.dayCounter().yearFraction(volTS.referenceDate(), volTS.referenceDate() + 1);
Date exerciseDate =
volTS.referenceDate() + ((BigInteger)ClosestRounding(0)(optionTime / oneDayAsYear));
Date effectiveDate = volTS.baseIndex_->fixingCalendar().advance(
exerciseDate, volTS.baseIndex_->fixingDays() * Days);
Date maturityDate = volTS.baseIndex_->fixingCalendar().advance(
effectiveDate, volTS.targIndex_->tenor(), Unadjusted, false);
// now we can set up the short tenor schedule
Schedule baseFloatSchedule(effectiveDate, maturityDate, volTS.baseIndex_->tenor(),
volTS.baseIndex_->fixingCalendar(), ModifiedFollowing,
Unadjusted, DateGeneration::Backward, false);
// set up scalar attributes
fraRateTarg_ = volTS.targIndex_->fixing(exerciseDate);
Time yfTarg = volTS.targIndex_->dayCounter().yearFraction(effectiveDate, maturityDate);
for (Size k = 0; k < baseFloatSchedule.dates().size() - 1; ++k) {
Date startDate = baseFloatSchedule.dates()[k];
Date fixingDate = volTS.baseIndex_->fixingCalendar().advance(
startDate, (-1 * volTS.baseIndex_->fixingDays()) * Days);
Time yearFrac = volTS.baseIndex_->dayCounter().yearFraction(
baseFloatSchedule.dates()[k], baseFloatSchedule.dates()[k + 1]);
// set up vector attributes
baseSmileSection_.push_back(volTS.baseVTS_->smileSection(fixingDate, true));
startTimeBase_.push_back(
volTS.dayCounter().yearFraction(volTS.referenceDate(), startDate));
fraRateBase_.push_back(volTS.baseIndex_->fixing(fixingDate));
v_.push_back(yearFrac / yfTarg * (1.0 + yfTarg * fraRateTarg_) /
(1.0 + yearFrac * fraRateBase_[k]));
}
}
Volatility TenorOptionletVTS::TenorOptionletSmileSection::volatilityImpl(Rate strike) const {
Real sum_v = 0.0;
for (Real k : v_)
sum_v += k;
std::vector<Real> volBase(v_.size());
for (Size k = 0; k < fraRateBase_.size(); ++k) {
Real strike_k = (strike - (fraRateTarg_ - sum_v * fraRateBase_[k])) / sum_v;
volBase[k] = baseSmileSection_[k]->volatility(strike_k, Normal, 0.0);
}
Real var = 0.0;
for (Size i = 0; i < volBase.size(); ++i) {
var += v_[i] * v_[i] * volBase[i] * volBase[i];
for (Size j = i + 1; j < volBase.size(); ++j) {
Real corr = (*correlation_)(startTimeBase_[i], startTimeBase_[j]);
var += 2.0 * corr * v_[i] * v_[j] * volBase[i] * volBase[j];
}
}
Real vol = sqrt(var);
return vol;
}
}
|