1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Roland Lichters
Copyright (C) 2009, 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/experimental/credit/gaussianlhplossmodel.hpp>
#ifndef QL_PATCH_SOLARIS
using std::sqrt;
namespace QuantLib {
CumulativeNormalDistribution const GaussianLHPLossModel::phi_ =
CumulativeNormalDistribution();
GaussianLHPLossModel::GaussianLHPLossModel(
const Handle<Quote>& correlQuote,
const std::vector<Handle<RecoveryRateQuote> >& quotes)
: LatentModel<GaussianCopulaPolicy>(sqrt(correlQuote->value()),
quotes.size(),
//g++ complains default value not seen as typename
GaussianCopulaPolicy::initTraits()),
sqrt1minuscorrel_(std::sqrt(1.-correlQuote->value())),
correl_(correlQuote),
rrQuotes_(quotes),
beta_(sqrt(correlQuote->value())),
biphi_(-sqrt(correlQuote->value()))
{
registerWith(correl_);
for (const auto& quote : quotes)
registerWith(quote);
}
GaussianLHPLossModel::GaussianLHPLossModel(
Real correlation,
const std::vector<Real>& recoveries)
: LatentModel<GaussianCopulaPolicy>(sqrt(correlation),
recoveries.size(),
//g++ complains default value not seen as typename
GaussianCopulaPolicy::initTraits()),
sqrt1minuscorrel_(std::sqrt(1.-correlation)),
correl_(Handle<Quote>(ext::make_shared<SimpleQuote>(correlation))),
beta_(sqrt(correlation)),
biphi_(-sqrt(correlation))
{
for (Real recoverie : recoveries)
rrQuotes_.emplace_back(ext::make_shared<RecoveryRateQuote>(recoverie));
}
GaussianLHPLossModel::GaussianLHPLossModel(
const Handle<Quote>& correlQuote,
const std::vector<Real>& recoveries)
: LatentModel<GaussianCopulaPolicy>(sqrt(correlQuote->value()),
recoveries.size(),
//g++ complains default value not seen as typename
GaussianCopulaPolicy::initTraits()),
sqrt1minuscorrel_(std::sqrt(1.-correlQuote->value())),
correl_(correlQuote),
beta_(sqrt(correlQuote->value())),
biphi_(-sqrt(correlQuote->value()))
{
registerWith(correl_);
for (Real recoverie : recoveries)
rrQuotes_.emplace_back(ext::make_shared<RecoveryRateQuote>(recoverie));
}
Real GaussianLHPLossModel::expectedTrancheLossImpl(
Real remainingNot, // << at the given date 'd'
Real prob, // << at the given date 'd'
Real averageRR, // << at the given date 'd'
// these are percentual values:
Real attachLimit, Real detachLimit) const
{
if (attachLimit >= detachLimit) return 0.;// or is it an error?
// expected remaining notional:
if (remainingNot == 0.) return 0.;
const Real one = 1.0 - 1.0e-12; // FIXME DUE TO THE INV CUMUL AT 1
const Real k1 = std::min(one, attachLimit /(1.0 - averageRR)
) + QL_EPSILON;
const Real k2 = std::min(one, detachLimit /(1.0 - averageRR)
) + QL_EPSILON;
if (prob > 0) {
const Real ip = InverseCumulativeNormal::standard_value(prob);
const Real invFlightK1 =
(ip-sqrt1minuscorrel_ *
InverseCumulativeNormal::standard_value(k1))/beta_;
const Real invFlightK2 = (ip-sqrt1minuscorrel_*
InverseCumulativeNormal::standard_value(k2))/beta_;
return remainingNot * (detachLimit * phi_(invFlightK2)
- attachLimit * phi_(invFlightK1) + (1.-averageRR) *
(biphi_(ip, -invFlightK2) - biphi_(ip, -invFlightK1)) );
}
else return 0.0;
}
Real GaussianLHPLossModel::probOverLoss(const Date& d,
Real remainingLossFraction) const {
// these test goes into basket<<<<<<<<<<<<<<<<<<<<<<<<<
QL_REQUIRE(remainingLossFraction >=0., "Incorrect loss fraction.");
QL_REQUIRE(remainingLossFraction <=1., "Incorrect loss fraction.");
Real remainingAttachAmount = basket_->remainingAttachmentAmount();
Real remainingDetachAmount = basket_->remainingDetachmentAmount();
// live unerlying portfolio loss fraction (remaining portf fraction)
const Real remainingBasktNot = basket_->remainingNotional(d);
const Real attach =
std::min(remainingAttachAmount / remainingBasktNot, 1.);
const Real detach =
std::min(remainingDetachAmount / remainingBasktNot, 1.);
Real portfFract =
attach + remainingLossFraction * (detach - attach);
Real averageRR = averageRecovery(d);
Real maxAttLossFract = (1.-averageRR);
if(portfFract > maxAttLossFract) return 0.;
// for non-equity losses add the probability jump at zero tranche
// losses (since this method returns prob of losing more or
// equal to)
if(portfFract <= QL_EPSILON) return 1.;
Probability prob = averageProb(d);
Real ip = InverseCumulativeNormal::standard_value(prob);
Real invFlightK = (ip-sqrt1minuscorrel_*
InverseCumulativeNormal::standard_value(portfFract
/(1.-averageRR)))/beta_;
return phi_(invFlightK);//probOver
}
Real GaussianLHPLossModel::expectedShortfall(const Date& d,
Probability perctl) const
{
// loss as a fraction of the live portfolio
Real ptflLossPerc = percentilePortfolioLossFraction(d, perctl);
Real remainingAttachAmount = basket_->remainingAttachmentAmount();
Real remainingDetachAmount = basket_->remainingDetachmentAmount();
const Real remainingNot = basket_->remainingNotional(d);
const Real attach =
std::min(remainingAttachAmount / remainingNot, 1.);
const Real detach =
std::min(remainingDetachAmount / remainingNot, 1.);
if(ptflLossPerc >= detach-QL_EPSILON)
return remainingNot * (detach-attach);//equivalent
Real maxLossLevel = std::max(attach, ptflLossPerc);
Probability prob = averageProb(d);
Real averageRR = averageRecovery(d);
Real valA = expectedTrancheLossImpl(remainingNot, prob,
averageRR, maxLossLevel, detach);
Real valB = // probOverLoss(d, maxLossLevel);//in live tranche units
// from fraction of basket notional to fraction of tranche notional
probOverLoss(d, std::min(std::max((maxLossLevel - attach)
/(detach - attach), 0.), 1.));
return ( valA + (maxLossLevel - attach) * remainingNot * valB )
/ (1.-perctl);
}
Real GaussianLHPLossModel::percentilePortfolioLossFraction(
const Date& d, Real perctl) const
{
// this test goes into basket<<<<<<<<<<<<<<<<<<<<<<<<<
QL_REQUIRE(perctl >= 0. && perctl <=1.,
"Percentile argument out of bounds.");
if(perctl==0.) return 0.;// portfl == attach
if(perctl==1.) perctl = 1. - QL_EPSILON; // portfl == detach
return (1.-averageRecovery(d)) *
phi_( ( InverseCumulativeNormal::standard_value(averageProb(d))
+ beta_ * InverseCumulativeNormal::standard_value(perctl) )
/sqrt1minuscorrel_);
}
}
#endif
|