1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2011 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file fdmexpoujumpop.cpp
\brief Ornstein Uhlenbeck process plus jumps (Kluge Model)
*/
#include <ql/experimental/finitedifferences/fdmextendedornsteinuhlenbeckop.hpp>
#include <ql/experimental/finitedifferences/fdmextoujumpop.hpp>
#include <ql/experimental/processes/extendedornsteinuhlenbeckprocess.hpp>
#include <ql/experimental/processes/extouwithjumpsprocess.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/operators/secondderivativeop.hpp>
#include <ql/termstructures/yieldtermstructure.hpp>
#if defined(QL_PATCH_MSVC)
#pragma warning(push)
#pragma warning(disable:4180)
#endif
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/operation.hpp>
#if defined(QL_PATCH_MSVC)
#pragma warning(pop)
#endif
namespace QuantLib {
FdmExtOUJumpOp::FdmExtOUJumpOp(
const ext::shared_ptr<FdmMesher>& mesher,
const ext::shared_ptr<ExtOUWithJumpsProcess>& process,
const ext::shared_ptr<YieldTermStructure>& rTS,
const FdmBoundaryConditionSet& bcSet,
Size integroIntegrationOrder)
: mesher_ (mesher),
process_(process),
rTS_ (rTS),
bcSet_ (bcSet),
gaussLaguerreIntegration_(integroIntegrationOrder),
x_ (mesher->locations(0)),
ouOp_ (new FdmExtendedOrnsteinUhlenbeckOp(
mesher,
process->getExtendedOrnsteinUhlenbeckProcess(), rTS, bcSet)),
dyMap_ (FirstDerivativeOp(1, mesher)
.mult(-process->beta()*mesher->locations(1)))
{
const Real eta = process_->eta();
const Real lambda = process_->jumpIntensity();
const Array yInt = gaussLaguerreIntegration_.x();
const Array weights= gaussLaguerreIntegration_.weights();
integroPart_ = SparseMatrix(mesher_->layout()->size(),
mesher_->layout()->size());
Array yLoc(mesher_->layout()->dim()[1]);
for (const auto& iter : *mesher_->layout()) {
yLoc[iter.coordinates()[1]] = mesher_->location(iter, 1);
}
for (const auto& iter : *mesher_->layout()) {
const Size diag = iter.index();
integroPart_(diag, diag) -= lambda;
const Real y = mesher_->location(iter, 1);
const Integer yIndex = iter.coordinates()[1];
for (Size i=0; i < yInt.size(); ++i) {
const Real weight = std::exp(-yInt[i])*weights[i];
const Real ys = y + yInt[i]/eta;
const Integer l = (ys > yLoc.back()) ? yLoc.size()-2
: std::upper_bound(yLoc.begin(),
yLoc.end()-1, ys) - yLoc.begin()-1;
const Real s = (ys-yLoc[l])/(yLoc[l+1]-yLoc[l]);
integroPart_(diag, mesher_->layout()->neighbourhood(iter, 1, l-yIndex))
+= weight*lambda*(1-s);
integroPart_(diag, mesher_->layout()->neighbourhood(iter, 1, l+1-yIndex))
+= weight*lambda*s;
}
}
}
Size FdmExtOUJumpOp::size() const {
return mesher_->layout()->dim().size();;
}
void FdmExtOUJumpOp::setTime(Time t1, Time t2) {
ouOp_->setTime(t1, t2);
}
Array FdmExtOUJumpOp::apply(const Array& r) const {
return ouOp_->apply(r) + dyMap_.apply(r) + integro(r);
}
Array FdmExtOUJumpOp::apply_mixed(const Array& r) const {
return integro(r);
}
Array FdmExtOUJumpOp::apply_direction(Size direction,
const Array& r) const {
if (direction == 0)
return ouOp_->apply_direction(direction, r);
else if (direction == 1)
return dyMap_.apply(r);
else {
return Array(r.size(), 0.0);
}
}
Array FdmExtOUJumpOp::solve_splitting(Size direction,
const Array& r, Real a) const {
if (direction == 0) {
return ouOp_->solve_splitting(direction, r, a);
}
else if (direction == 1) {
return dyMap_.solve_splitting(r, a, 1.0);
}
else {
return r;
}
}
Array FdmExtOUJumpOp::preconditioner(const Array& r, Real dt) const {
return ouOp_->solve_splitting(0, r, dt);
}
Array FdmExtOUJumpOp::integro(const Array& r) const {
return prod(integroPart_, r);
}
std::vector<SparseMatrix> FdmExtOUJumpOp::toMatrixDecomp() const {
QL_REQUIRE(bcSet_.empty(), "boundary conditions are not supported");
std::vector<SparseMatrix> retVal(1, ouOp_->toMatrixDecomp().front());
retVal.push_back(dyMap_.toMatrix());
retVal.push_back(integroPart_);
return retVal;
}
}
|