File: laplaceinterpolation.hpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (77 lines) | stat: -rw-r--r-- 2,906 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2015, 2024 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file laplaceinterpolation.hpp
    \brief Laplace interpolation of missing values
*/

#ifndef quantlib_laplace_interpolation
#define quantlib_laplace_interpolation

#include <ql/math/array.hpp>
#include <ql/math/matrix.hpp>
#include <ql/shared_ptr.hpp>
#include <ql/types.hpp>

#include <vector>

namespace QuantLib {

    class FdmLinearOpLayout;

    /*! Reconstruction of missing values using Laplace interpolation. We support an arbitrary number
       of dimensions n >= 1 and non-equidistant grids. For n = 1 the method is identical  to linear
       interpolation with flat extrapolation. Reference: Numerical Recipes, 3rd edition, ch. 3.8. */

    class LaplaceInterpolation {
      public:
        /*! Missing values y should be encoded as Null<Real>(). */
        LaplaceInterpolation(std::function<Real(const std::vector<Size>&)> y,
                             std::vector<std::vector<Real>> x,
                             Real relTol = 1E-6,
                             Size maxIterMultiplier = 10);
        Real operator()(const std::vector<Size>& coordinates) const;

      private:
        std::vector<Size> projectedCoordinates(const std::vector<Size>& coordinates) const;
        std::vector<Size> fullCoordinates(const std::vector<Size>& projectedCoordinates) const;

        std::function<Real(const std::vector<Size>&)> y_;
        std::vector<std::vector<Real>> x_;
        Real relTol_;
        Size maxIterMultiplier_;

        std::vector<bool> coordinateIncluded_;
        Size numberOfCoordinatesIncluded_;

        ext::shared_ptr<FdmLinearOpLayout> layout_;
        Array interpolatedValues_;
    };

    /*! Convenience function that Laplace-interpolates null values in a given matrix.
        If the x or y grid or both are not given, an equidistant grid is assumed. */

    void laplaceInterpolation(Matrix& A,
                              const std::vector<Real>& x = {},
                              const std::vector<Real>& y = {},
                              Real relTol = 1E-6,
                              Size maxIterMultiplier = 10);
}

#endif