File: generalizedhullwhite.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (261 lines) | stat: -rw-r--r-- 9,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2010 SunTrust Bank
 Copyright (C) 2010, 2014 Cavit Hafizoglu

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/experimental/shortrate/generalizedhullwhite.hpp>
#include <ql/math/integrals/simpsonintegral.hpp>
#include <ql/math/interpolations/backwardflatinterpolation.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/methods/lattices/trinomialtree.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <utility>

namespace QuantLib {

    namespace {

        // integral of mean reversion
        Real integrateMeanReversion(const Interpolation &a,Real t,Real T) {
            if ((T-t) < QL_EPSILON)
                return 0.0;
            SimpsonIntegral integrator(1e-5, 1000);
            Real mr = integrator(a,t,T);
            return mr;
        }

    }

    /* Private function used by solver to determine time-dependent parameter
       df(r) = [theta(t) - a(t) f(r)]dt + sigma(t) dz
       dg = [theta(t) - a(t) g(t)] dt
       dx = -a(t) x dt + sigma(t) dz
       x = f(r) - g(t)
    */
    class GeneralizedHullWhite::Helper {
      public:
        Helper(const Size i,
               const Real xMin,
               const Real dx,
               const Real discountBondPrice,
               const ext::shared_ptr<ShortRateTree>& tree,
               std::function<Real(Real)> fInv)
        : size_(tree->size(i)), dt_(tree->timeGrid().dt(i)), xMin_(xMin), dx_(dx),
          statePrices_(tree->statePrices(i)), discountBondPrice_(discountBondPrice),
          fInverse_(std::move(fInv)) {}

        Real operator()(const Real theta) const {
            Real value = discountBondPrice_;
            Real x = xMin_;
            for (Size j=0; j<size_; j++) {
                Real discount = std::exp(- fInverse_(theta+x)*dt_);
                value -= statePrices_[j]*discount;
                x += dx_;
            }
            return value;
        };

      private:
        Size size_;
        Time dt_;
        Real xMin_, dx_;
        const Array& statePrices_;
        Real discountBondPrice_;
        std::function<Real(Real)> fInverse_;
    };

    GeneralizedHullWhite::GeneralizedHullWhite(
        const Handle<YieldTermStructure>& yieldtermStructure,
        const std::vector<Date>& speedstructure,
        const std::vector<Date>& volstructure,
        const std::vector<Real>& speed,
        const std::vector<Real>& vol,
        const std::function<Real(Real)>& f,
        const std::function<Real(Real)>& fInverse)
    : OneFactorAffineModel(2), TermStructureConsistentModel(yieldtermStructure),
      speedstructure_(speedstructure),
      volstructure_(volstructure),
      a_(arguments_[0]), sigma_(arguments_[1]),
      f_(f), fInverse_(fInverse) {

        LinearFlat traits;
        initialize(yieldtermStructure,speedstructure,volstructure,
          speed, vol, traits, traits, f, fInverse);
    }

    //classical HW
    GeneralizedHullWhite::GeneralizedHullWhite(
        const Handle<YieldTermStructure>& yieldtermStructure,
        Real a, Real sigma)
    : OneFactorAffineModel(2),
      TermStructureConsistentModel(yieldtermStructure),
      a_(arguments_[0]),
      sigma_(arguments_[1])
    {
        Date ref = yieldtermStructure->referenceDate();
        std::vector<Date> speedstructure,volstructure;
        std::vector<Real> _a, _sigma;
        _a.push_back(a);
        _sigma.push_back(sigma);
        speedstructure.push_back(ref);
        volstructure.push_back(ref);
        BackwardFlat traits;
        initialize(yieldtermStructure,speedstructure,volstructure,
            _a, _sigma, traits, traits, identity, identity);
    }

    void GeneralizedHullWhite::generateArguments() {
        speed_.update();
        vol_.update();
        phi_ = FittingParameter(termStructure(), a(), sigma());
    }

    Real GeneralizedHullWhite::B(Time t, Time T) const {
        // Gurrieri et al, equations (30) and (31)
        Real lnEt = integrateMeanReversion(speed_,0,t);
        Real Et = exp(lnEt);
        Real B = 0;
        Size N = std::min<Size>(Size((T-t)*365), 2000);
        if (N==0) N=1;
        Real dt = 0.5*(T-t)/N;
        Real a,b,c,_t,total=0;
        _t = t;
        c = speed_(_t);
        _t += dt;
        for (Size i=0; i<N; i++) {
            a = c;
            b = speed_(_t);
            c = speed_(_t+dt);
            total += (dt*(2.0/6.0))*(a+4*b+c);
            B += (2*dt) / exp(lnEt+total);
            _t += 2*dt;
        }
        B *= Et;
        return B;
    }

    Real GeneralizedHullWhite::V(Time t, Time T) const {
        // Gurrieri et al, equation (37)
        Real lnEt = integrateMeanReversion(speed_,0,t);
        Real V = 0,Eu;
        Size N = std::min<Size>(Size((T-t)*365), 2000);
        if (N==0) N=1;
        Real dt = 0.5*(T-t)/N;
        Real a,b,c,_t,lnE=lnEt;
        _t = t;
        Real vol = vol_(_t);
        Eu = exp(lnE);
        c = Eu*Eu*vol*vol;
        _t += dt;
        for (Size i=0; i<N; i++) {
            a = c;
            vol = vol_(_t);
            lnE += speed_(_t)*dt;
            Eu = exp(lnE);
            b = Eu*Eu*vol*vol;
            vol = vol_(_t+dt);
            lnE += speed_(_t+dt)*dt;
            Eu = exp(lnE);
            c = Eu*Eu*vol*vol;
            V += (dt*(2.0/6.0))*(a+4*b+c);
            _t += 2*dt;
        }
        return V / (Eu*Eu);
    }

    Real GeneralizedHullWhite::discountBondOption(Option::Type type, Real strike,
                                                  Time maturity,
                                                  Time bondMaturity) const
    {
        /*
        Hull-White bond option pricing with time varying sigma and mean reversion.
        Based on Gurrieri, Nakabayashi & Wong (2009) "Calibration Methods of
        Hull-White Model", https://ssrn.com/abstract=1514192
        */
        Real BtT = B(maturity,bondMaturity);
        Real Vr = V(0,maturity);
        Real Vp = Vr*BtT*BtT;
        Real vol = sqrt(Vp);
        Real f = termStructure()->discount(bondMaturity);
        Real k = termStructure()->discount(maturity)*strike;
        return blackFormula(type, k, f, vol);
    }

    Real GeneralizedHullWhite::A(Time t, Time T) const {
        // Gurrieri et al, equation (43)
        DiscountFactor discount1 = termStructure()->discount(t);
        DiscountFactor discount2 = termStructure()->discount(T);
        Rate forward = termStructure()->forwardRate(t, t, Continuous, NoFrequency);
        Real BtT = B(t,T);
        Real Vr = V(0,t);
        Real AtT = log(discount2/discount1) + BtT*forward - 0.5*BtT*BtT*Vr;
        return exp(AtT);
    }


    ext::shared_ptr<Lattice> GeneralizedHullWhite::tree(
                                                  const TimeGrid& grid) const{

        TermStructureFittingParameter phi(termStructure());
        ext::shared_ptr<ShortRateDynamics> numericDynamics(
            new Dynamics(phi, speed(), vol(), f_, fInverse_));
        ext::shared_ptr<TrinomialTree> trinomial(
            new TrinomialTree(numericDynamics->process(), grid));
        ext::shared_ptr<ShortRateTree> numericTree(
            new ShortRateTree(trinomial, numericDynamics, grid));
        typedef TermStructureFittingParameter::NumericalImpl NumericalImpl;
        ext::shared_ptr<NumericalImpl> impl =
            ext::dynamic_pointer_cast<NumericalImpl>(phi.implementation());

        impl->reset();
        Real value = 1.0;
        Real vMin = -50.0;
        Real vMax = 50.0;

        for (Size i=0; i<(grid.size() - 1); i++) {
            Real discountBond = termStructure()->discount(grid[i+1]);
            Real xMin = trinomial->underlying(i, 0);
            Real dx = trinomial->dx(i);
            Helper finder(i, xMin, dx, discountBond, numericTree, fInverse_);
            Brent s1d;
            s1d.setMaxEvaluations(2000);
            value =s1d.solve(finder, 1e-8, value, vMin, vMax);
            impl->set(grid[i], value);
        }

        return numericTree;
    }

    std::function<Real (Time)> GeneralizedHullWhite::speed() const {
        return speed_;
    }

    std::function<Real (Time)> GeneralizedHullWhite::vol() const {
        return vol_;
    }

    //! vector to pass to 'calibrate' to fit only volatility
    std::vector<bool> GeneralizedHullWhite::fixedReversion() const {
        Size na = a_.params().size();
        Size nsigma = sigma_.params().size();
        std::vector<bool> fixr(na+nsigma,false);
        std::fill(fixr.begin(),fixr.begin()+na,true);
        return fixr;
    }

}