1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2010 Adrian O' Neill
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/exercise.hpp>
#include <ql/experimental/variancegamma/fftengine.hpp>
#include <ql/math/fastfouriertransform.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <complex>
#include <utility>
namespace QuantLib {
FFTEngine::FFTEngine(ext::shared_ptr<StochasticProcess1D> process, Real logStrikeSpacing)
: process_(std::move(process)), lambda_(logStrikeSpacing) {
registerWith(process_);
}
void FFTEngine::calculate() const
{
QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
"not an European Option");
ext::shared_ptr<StrikedTypePayoff> payoff =
ext::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-striked payoff given");
auto r1 = resultMap_.find(arguments_.exercise->lastDate());
if (r1 != resultMap_.end())
{
auto r2 = r1->second.find(payoff);
if (r2 != r1->second.end())
{
results_.value = r2->second;
return;
}
}
// Option not precalculated - do entire FFT for one option. Not very efficient - call precalculate!
calculateUncached(payoff, arguments_.exercise);
}
void FFTEngine::update()
{
// Process has changed so cached values may no longer be correct
resultMap_.clear();
// Call base class implementation
VanillaOption::engine::update();
}
void FFTEngine::calculateUncached(const ext::shared_ptr<StrikedTypePayoff>& payoff,
const ext::shared_ptr<Exercise>& exercise) const {
ext::shared_ptr<VanillaOption> option(new VanillaOption(payoff, exercise));
std::vector<ext::shared_ptr<Instrument> > optionList;
optionList.push_back(option);
ext::shared_ptr<FFTEngine> tempEngine(clone().release());
tempEngine->precalculate(optionList);
option->setPricingEngine(tempEngine);
results_.value = option->NPV();
}
void FFTEngine::precalculate(const std::vector<ext::shared_ptr<Instrument> >& optionList) {
// Group payoffs by expiry date
// as with FFT we can compute a bunch of these at once
resultMap_.clear();
typedef std::vector<ext::shared_ptr<StrikedTypePayoff> > PayoffList;
typedef std::map<Date, PayoffList> PayoffMap;
PayoffMap payoffMap;
for (const auto& optIt : optionList) {
ext::shared_ptr<VanillaOption> option = ext::dynamic_pointer_cast<VanillaOption>(optIt);
QL_REQUIRE(option, "instrument must be option");
QL_REQUIRE(option->exercise()->type() == Exercise::European,
"not an European Option");
ext::shared_ptr<StrikedTypePayoff> payoff =
ext::dynamic_pointer_cast<StrikedTypePayoff>(option->payoff());
QL_REQUIRE(payoff, "non-striked payoff given");
payoffMap[option->exercise()->lastDate()].push_back(payoff);
}
std::complex<Real> i1(0, 1);
Real alpha = 1.25;
for (auto & payIt : payoffMap)
{
Date expiryDate = payIt.first;
// Calculate n large enough for maximum strike, and round up to a power of 2
Real maxStrike = 0.0;
for (const auto& payoff : payIt.second) {
if (payoff->strike() > maxStrike)
maxStrike = payoff->strike();
}
Real nR = 2.0 * (std::log(maxStrike) + lambda_) / lambda_;
Size log2_n = (static_cast<Size>((std::log(nR) / std::log(2.0))) + 1);
Size n = static_cast<std::size_t>(1) << log2_n;
// Strike range (equation 19,20)
Real b = n * lambda_ / 2.0;
// Grid spacing (equation 23)
Real eta = 2.0 * M_PI / (lambda_ * n);
// Discount factor
Real df = discountFactor(expiryDate);
Real div = dividendYield(expiryDate);
// Input to fourier transform
std::vector<std::complex<Real> > fti;
fti.resize(n);
// Precalculate any discount factors etc.
precalculateExpiry(expiryDate);
for (Size i=0; i<n; i++)
{
Real v_j = eta * i;
Real sw = eta * (3.0 + ((i % 2) == 0 ? -1.0 : 1.0) - ((i == 0) ? 1.0 : 0.0)) / 3.0;
std::complex<Real> psi = df * complexFourierTransform(v_j - (alpha + 1)* i1);
psi = psi / (alpha*alpha + alpha - v_j*v_j + i1 * (2 * alpha + 1.0) * v_j);
fti[i] = std::exp(i1 * b * v_j) * sw * psi;
}
// Perform fft
std::vector<std::complex<Real> > results(n);
FastFourierTransform fft(log2_n);
fft.transform(fti.begin(), fti.end(), results.begin());
// Call prices
std::vector<Real> prices, strikes;
prices.resize(n);
strikes.resize(n);
for (Size i=0; i<n; i++)
{
Real k_u = -b + lambda_ * i;
prices[i] = (std::exp(-alpha * k_u) / M_PI) * results[i].real();
strikes[i] = std::exp(k_u);
}
for (const auto& payoff : payIt.second) {
Real callPrice = LinearInterpolation(strikes.begin(), strikes.end(),
prices.begin())(payoff->strike());
switch (payoff->optionType())
{
case Option::Call:
resultMap_[expiryDate][payoff] = callPrice;
break;
case Option::Put:
resultMap_[expiryDate][payoff] = callPrice - process_->x0() * div + payoff->strike() * df;
break;
default:
QL_FAIL("Invalid option type");
}
}
}
}
}
|