1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Michal Kaut
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/distributions/bivariatestudenttdistribution.hpp>
namespace QuantLib {
namespace {
Real epsilon = 1.0e-8;
Real sign(Real val) {
return val == 0.0 ? 0.0
: (val < 0.0 ? -1.0 : 1.0);
}
/* unlike the atan2 function in C++ that gives results in
[-pi,pi], this returns a value in [0, 2*pi]
*/
Real arctan(Real x, Real y) {
Real res = std::atan2(x, y);
return res >= 0.0 ? res : res + 2 * M_PI;
}
// function x(m,h,k) defined on top of page 155
Real f_x(Real m, Real h, Real k, Real rho) {
Real unCor = 1 - rho*rho;
Real sub = std::pow(h - rho * k, 2);
Real denom = sub + unCor * (m + k*k);
if (denom < epsilon)
return 0.0; // limit case for rho = +/-1.0
return sub / (sub + unCor * (m + k*k));
}
// this calculates the cdf
Real P_n(Real h, Real k, Natural n, Real rho) {
Real unCor = 1.0 - rho*rho;
Real div = 4 * std::sqrt(n * M_PI);
Real xHK = f_x(n, h, k, rho);
Real xKH = f_x(n, k, h, rho);
Real divH = 1 + h*h / n;
Real divK = 1 + k*k / n;
Real sgnHK = sign(h - rho * k);
Real sgnKH = sign(k - rho * h);
if (n % 2 == 0) { // n is even, equation (10)
// first line of (10)
Real res = arctan(std::sqrt(unCor), -rho) / M_TWOPI;
// second line of (10)
Real dgM = 2 * (1 - xHK); // multiplier for dgj
Real gjM = sgnHK * 2 / M_PI; // multiplier for g_j
// initializations for j = 1:
Real f_j = std::sqrt(M_PI / divK);
Real g_j = 1 + gjM * arctan(std::sqrt(xHK), std::sqrt(1 - xHK));
Real sum = f_j * g_j;
if (n >= 4) {
// different formulas for j = 2:
f_j *= 0.5 / divK; // (2 - 1.5) / (Real) (2 - 1) / divK;
Real dgj = gjM * std::sqrt(xHK * (1 - xHK));
g_j += dgj;
sum += f_j * g_j;
// and then the loop for the rest of the j's:
for (Natural j = 3; j <= n / 2; ++j) {
f_j *= (j - 1.5) / (Real) (j - 1) / divK;
dgj *= (Real) (j - 2) / (2 * j - 3) * dgM;
g_j += dgj;
sum += f_j * g_j;
}
}
res += k / div * sum;
// third line of (10)
dgM = 2 * (1 - xKH);
gjM = sgnKH * 2 / M_PI;
// initializations for j = 1:
f_j = std::sqrt(M_PI / divH);
g_j = 1 + gjM * arctan(std::sqrt(xKH), std::sqrt(1 - xKH));
sum = f_j * g_j;
if (n >= 4) {
// different formulas for j = 2:
f_j *= 0.5 / divH; // (2 - 1.5) / (Real) (2 - 1) / divK;
Real dgj = gjM * std::sqrt(xKH * (1 - xKH));
g_j += dgj;
sum += f_j * g_j;
// and then the loop for the rest of the j's:
for (Natural j = 3; j <= n / 2; ++j) {
f_j *= (j - 1.5) / (Real) (j - 1) / divH;
dgj *= (Real) (j - 2) / (2 * j - 3) * dgM;
g_j += dgj;
sum += f_j * g_j;
}
}
res += h / div * sum;
return res;
} else { // n is odd, equation (11)
// first line of (11)
Real hk = h * k;
Real hkcn = hk + rho * n;
Real sqrtExpr = std::sqrt(h*h - 2 * rho * hk + k*k + n * unCor);
Real res = arctan(std::sqrt(Real(n)) * (-(h + k) * hkcn - (hk - n) * sqrtExpr),
(hk - n) * hkcn - n * (h + k) * sqrtExpr ) / M_TWOPI;
if (n > 1) {
// second line of (11)
Real mult = (1 - xHK) / 2;
// initializations for j = 1:
Real f_j = 2 / std::sqrt(M_PI) / divK;
Real dgj = sgnHK * std::sqrt(xHK);
Real g_j = 1 + dgj;
Real sum = f_j * g_j;
// and then the loop for the rest of the j's:
for (Natural j = 2; j <= (n - 1) / 2; ++j) {
f_j *= (Real) (j - 1) / (j - 0.5) / divK;
dgj *= (Real) (2 * j - 3) / (j - 1) * mult;
g_j += dgj;
sum += f_j * g_j;
}
res += k / div * sum;
// third line of (11)
mult = (1 - xKH) / 2;
// initializations for j = 1:
f_j = 2 / std::sqrt(M_PI) / divH;
dgj = sgnKH * std::sqrt(xKH);
g_j = 1 + dgj;
sum = f_j * g_j;
// and then the loop for the rest of the j's:
for (Natural j = 2; j <= (n - 1) / 2; ++j) {
f_j *= (Real) (j - 1) / (j - 0.5) / divH;
dgj *= (Real) (2 * j - 3) / (j - 1) * mult;
g_j += dgj;
sum += f_j * g_j;
}
res += h / div * sum;
}
return res;
}
}
}
BivariateCumulativeStudentDistribution::
BivariateCumulativeStudentDistribution(Natural n,
Real rho)
: n_(n), rho_(rho) {}
Real BivariateCumulativeStudentDistribution::operator()(Real x,
Real y) const {
return P_n(x, y, n_, rho_);
}
}
|