1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005, 2006 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file gaussianorthogonalpolynomial.hpp
\brief orthogonal polynomials for gaussian quadratures
*/
#ifndef quantlib_gaussian_orthogonal_polynomial_hpp
#define quantlib_gaussian_orthogonal_polynomial_hpp
#include <ql/types.hpp>
namespace QuantLib {
//! orthogonal polynomial for Gaussian quadratures
/*! References:
Gauss quadratures and orthogonal polynomials
G.H. Gloub and J.H. Welsch: Calculation of Gauss quadrature rule.
Math. Comput. 23 (1986), 221-230
"Numerical Recipes in C", 2nd edition,
Press, Teukolsky, Vetterling, Flannery,
The polynomials are defined by the three-term recurrence relation
\f[
P_{k+1}(x)=(x-\alpha_k) P_k(x) - \beta_k P_{k-1}(x)
\f]
and
\f[
\mu_0 = \int{w(x)dx}
\f]
*/
class GaussianOrthogonalPolynomial {
public:
virtual ~GaussianOrthogonalPolynomial() = default;
virtual Real mu_0() const = 0;
virtual Real alpha(Size i) const = 0;
virtual Real beta(Size i) const = 0;
virtual Real w(Real x) const = 0;
Real value(Size i, Real x) const;
Real weightedValue(Size i, Real x) const;
};
//! Gauss-Laguerre polynomial
class GaussLaguerrePolynomial : public GaussianOrthogonalPolynomial {
public:
explicit GaussLaguerrePolynomial(Real s = 0.0);
Real mu_0() const override;
Real alpha(Size i) const override;
Real beta(Size i) const override;
Real w(Real x) const override;
private:
const Real s_;
};
//! Gauss-Hermite polynomial
class GaussHermitePolynomial : public GaussianOrthogonalPolynomial {
public:
explicit GaussHermitePolynomial(Real mu = 0.0);
Real mu_0() const override;
Real alpha(Size i) const override;
Real beta(Size i) const override;
Real w(Real x) const override;
private:
const Real mu_;
};
//! Gauss-Jacobi polynomial
class GaussJacobiPolynomial : public GaussianOrthogonalPolynomial {
public:
explicit GaussJacobiPolynomial(Real alpha, Real beta);
Real mu_0() const override;
Real alpha(Size i) const override;
Real beta(Size i) const override;
Real w(Real x) const override;
private:
const Real alpha_;
const Real beta_;
};
//! Gauss-Legendre polynomial
class GaussLegendrePolynomial : public GaussJacobiPolynomial {
public:
GaussLegendrePolynomial();
};
//! Gauss-Chebyshev polynomial
class GaussChebyshevPolynomial : public GaussJacobiPolynomial {
public:
GaussChebyshevPolynomial();
};
//! Gauss-Chebyshev polynomial (second kind)
class GaussChebyshev2ndPolynomial : public GaussJacobiPolynomial {
public:
GaussChebyshev2ndPolynomial();
};
//! Gauss-Gegenbauer polynomial
class GaussGegenbauerPolynomial : public GaussJacobiPolynomial {
public:
explicit GaussGegenbauerPolynomial(Real lambda);
};
//! Gauss hyperbolic polynomial
class GaussHyperbolicPolynomial : public GaussianOrthogonalPolynomial {
public:
Real mu_0() const override;
Real alpha(Size i) const override;
Real beta(Size i) const override;
Real w(Real x) const override;
};
}
#endif
|