File: tapcorrelations.hpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (106 lines) | stat: -rw-r--r-- 4,494 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2007 François du Vignaud

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/


#ifndef quantlib_tap_correlations_hpp
#define quantlib_tap_correlations_hpp

#include <ql/math/matrix.hpp>
#include <ql/math/optimization/costfunction.hpp>
#include <ql/types.hpp>
#include <functional>
#include <utility>
#include <vector>

namespace QuantLib {

    //! Returns the Triangular Angles Parametrized correlation matrix
    /*! The matrix \f$ m \f$ is filled with values corresponding to angles
        given in the \f$ angles \f$ vector. See equation (24) in
        "Parameterizing correlations: a geometric interpretation"
        by Francesco Rapisarda, Damiano Brigo, Fabio Mercurio

        \test
        - the correctness of the results is tested by reproducing
          known good data.
        - the correctness of the results is tested by checking
          returned values against numerical calculations.
    */
    Matrix triangularAnglesParametrization(const Array& angles,
                                           Size matrixSize,
                                           Size rank);

    Matrix lmmTriangularAnglesParametrization(const Array& angles,
                                              Size matrixSize,
                                              Size rank);

    // the same function using the angles parameterized by the following
    // transformation \f[ \teta_i = \frac{\Pi}{2} - arctan(x_i)\f]
    Matrix triangularAnglesParametrizationUnconstrained(const Array& x,
                                                        Size matrixSize,
                                                        Size rank);

    Matrix lmmTriangularAnglesParametrizationUnconstrained(const Array& x,
                                                           Size matrixSize,
                                                           Size rank);


    //! Returns the rank reduced Triangular Angles Parametrized correlation matrix
    /*! The matrix \f$ m \f$ is filled with values corresponding to angles
        corresponding  to the 3D spherical spiral parameterized by
        \f$ alpha \f$, \f$ t0 \f$, \f$ epsilon \f$ values. See equation (32) in
        "Parameterizing correlations: a geometric interpretation"
        by Francesco Rapisarda, Damiano Brigo, Fabio Mercurio

        \test
        - the correctness of the results is tested by reproducing
          known good data.
        - the correctness of the results is tested by checking
          returned values against numerical calculations.
    */
    Matrix triangularAnglesParametrizationRankThree(Real alpha,
                                                    Real t0,
                                                    Real epsilon,
                                                    Size nbRows);

    // the same function with parameters packed in an Array
    Matrix triangularAnglesParametrizationRankThreeVectorial(const Array& parameters,
                                                             Size nbRows);

    // Cost function associated with Frobenius norm.
    // <http://en.wikipedia.org/wiki/Matrix_norm>
    class FrobeniusCostFunction : public CostFunction{
      public:
        FrobeniusCostFunction(Matrix target,
                              std::function<Matrix(const Array&, Size, Size)> f,
                              Size matrixSize,
                              Size rank)
        : target_(std::move(target)), f_(std::move(f)), matrixSize_(matrixSize), rank_(rank) {}
        Real value(const Array& x) const override;
        Array values(const Array& x) const override;

      private:
        Matrix target_;
        std::function<Matrix(const Array&, Size, Size)> f_;
        Size matrixSize_;
        Size rank_;
    };
}

#endif