File: fdmblackscholesop.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (137 lines) | stat: -rw-r--r-- 5,361 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Andreas Gaida
 Copyright (C) 2008, 2009 Ralph Schreyer
 Copyright (C) 2008, 2009 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/instruments/payoffs.hpp>
#include <ql/math/functional.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmblackscholesop.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/operators/secondderivativeop.hpp>
#include <utility>

namespace QuantLib {

    FdmBlackScholesOp::FdmBlackScholesOp(
        const ext::shared_ptr<FdmMesher>& mesher,
        const ext::shared_ptr<GeneralizedBlackScholesProcess>& bsProcess,
        Real strike,
        bool localVol,
        Real illegalLocalVolOverwrite,
        Size direction,
        ext::shared_ptr<FdmQuantoHelper> quantoHelper)
    : mesher_(mesher), rTS_(bsProcess->riskFreeRate().currentLink()),
      qTS_(bsProcess->dividendYield().currentLink()),
      volTS_(bsProcess->blackVolatility().currentLink()),
      localVol_((localVol) ? bsProcess->localVolatility().currentLink() :
                             ext::shared_ptr<LocalVolTermStructure>()),
      x_((localVol) ? Array(Exp(mesher->locations(direction))) : Array()),
      dxMap_(FirstDerivativeOp(direction, mesher)), dxxMap_(SecondDerivativeOp(direction, mesher)),
      mapT_(direction, mesher), strike_(strike),
      illegalLocalVolOverwrite_(illegalLocalVolOverwrite), direction_(direction),
      quantoHelper_(std::move(quantoHelper)) {}

    void FdmBlackScholesOp::setTime(Time t1, Time t2) {
        const Rate r = rTS_->forwardRate(t1, t2, Continuous).rate();
        const Rate q = qTS_->forwardRate(t1, t2, Continuous).rate();

        if (localVol_ != nullptr) {
            Array v(mesher_->layout()->size());
            for (const auto& iter : *mesher_->layout()) {
                const Size i = iter.index();

                if (illegalLocalVolOverwrite_ < 0.0) {
                    v[i] = squared(localVol_->localVol(0.5*(t1+t2), x_[i], true));
                }
                else {
                    try {
                        v[i] = squared(localVol_->localVol(0.5*(t1+t2), x_[i], true));
                    } catch (Error&) {
                        v[i] = squared(illegalLocalVolOverwrite_);
                    }
                }
            }

            if (quantoHelper_ != nullptr) {
                mapT_.axpyb(r - q - 0.5*v
                    - quantoHelper_->quantoAdjustment(Sqrt(v), t1, t2),
                    dxMap_, dxxMap_.mult(0.5*v), Array(1, -r));
            } else {
                mapT_.axpyb(r - q - 0.5*v, dxMap_,
                            dxxMap_.mult(0.5*v), Array(1, -r));
            }
        } else {
            const Real v
                = volTS_->blackForwardVariance(t1, t2, strike_)/(t2-t1);

            if (quantoHelper_ != nullptr) {
                mapT_.axpyb(
                    Array(1, r - q - 0.5*v)
                        - quantoHelper_->quantoAdjustment(
                            Array(1, std::sqrt(v)), t1, t2),
                    dxMap_,
                    dxxMap_.mult(0.5*Array(mesher_->layout()->size(), v)),
                    Array(1, -r));
            } else {
                mapT_.axpyb(Array(1, r - q - 0.5*v), dxMap_,
                    dxxMap_.mult(0.5*Array(mesher_->layout()->size(), v)),
                    Array(1, -r));
            }
        }
    }

    Size FdmBlackScholesOp::size() const { return 1U; }

    Array FdmBlackScholesOp::apply(const Array& u) const {
        return mapT_.apply(u);
    }

    Array FdmBlackScholesOp::apply_direction(Size direction,
                                             const Array& r) const {
        if (direction == direction_)
            return mapT_.apply(r);
        else {
            return Array(r.size(), 0.0);
        }
    }

    Array FdmBlackScholesOp::apply_mixed(const Array& r) const {
        return Array(r.size(), 0.0);
    }

    Array FdmBlackScholesOp::solve_splitting(Size direction,
                                             const Array& r, Real dt) const {
        if (direction == direction_)
            return mapT_.solve_splitting(r, dt, 1.0);
        else {
            return r;
        }
    }

    Array FdmBlackScholesOp::preconditioner(const Array& r,
                                            Real dt) const {
        return solve_splitting(direction_, r, dt);
    }

    std::vector<SparseMatrix> FdmBlackScholesOp::toMatrixDecomp() const {
        return std::vector<SparseMatrix>(1, mapT_.toMatrix());
    }

}