1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2012, 2013 Klaus Spanderen
Copyright (C) 2014 Johannes Göttker-Schnetmann
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file fdmhestonfwdop.cpp
*/
#include <ql/methods/finitedifferences/operators/fdmhestonfwdop.hpp>
#include <ql/methods/finitedifferences/operators/modtriplebandlinearop.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/operators/firstderivativeop.hpp>
#include <ql/methods/finitedifferences/operators/secondderivativeop.hpp>
#include <ql/methods/finitedifferences/operators/secondordermixedderivativeop.hpp>
#include <ql/processes/hestonprocess.hpp>
#include <cmath>
#include <utility>
using std::exp;
namespace QuantLib {
FdmHestonFwdOp::FdmHestonFwdOp(const ext::shared_ptr<FdmMesher>& mesher,
const ext::shared_ptr<HestonProcess>& process,
FdmSquareRootFwdOp::TransformationType type,
ext::shared_ptr<LocalVolTermStructure> leverageFct,
const Real mixingFactor)
: type_(type), kappa_(process->kappa()), theta_(process->theta()), sigma_(process->sigma()),
rho_(process->rho()), v0_(process->v0()), mixedSigma_(mixingFactor * sigma_),
rTS_(process->riskFreeRate().currentLink()), qTS_(process->dividendYield().currentLink()),
varianceValues_(0.5 * mesher->locations(1)),
dxMap_(ext::make_shared<FirstDerivativeOp>(0, mesher)),
dxxMap_(ext::make_shared<ModTripleBandLinearOp>(TripleBandLinearOp(
type == FdmSquareRootFwdOp::Log ?
SecondDerivativeOp(0, mesher).mult(0.5 * Exp(mesher->locations(1))) :
SecondDerivativeOp(0, mesher).mult(0.5 * mesher->locations(1))))),
boundary_(ext::make_shared<ModTripleBandLinearOp>(TripleBandLinearOp(
SecondDerivativeOp(0, mesher).mult(Array(mesher->locations(0).size(), 0.0))))),
mapX_(ext::make_shared<TripleBandLinearOp>(0, mesher)),
mapY_(ext::make_shared<FdmSquareRootFwdOp>(mesher, kappa_, theta_, mixedSigma_, 1, type)),
correlation_(ext::make_shared<NinePointLinearOp>(
type == FdmSquareRootFwdOp::Log ?
SecondOrderMixedDerivativeOp(0, 1, mesher)
.mult(Array(mesher->layout()->size(), rho_ * mixedSigma_)) :
SecondOrderMixedDerivativeOp(0, 1, mesher)
.mult(rho_ * mixedSigma_ * mesher->locations(1)))),
leverageFct_(std::move(leverageFct)), mesher_(mesher) {
// zero flux boundary condition
const Size n = mesher->layout()->dim()[1];
const Real lowerBoundaryFactor = mapY_->lowerBoundaryFactor(type);
const Real upperBoundaryFactor = mapY_->upperBoundaryFactor(type);
const Real logFacLow = type == FdmSquareRootFwdOp::Log ? Real(exp(mapY_->v(0))) : 1.0;
const Real logFacUpp = type == FdmSquareRootFwdOp::Log ? Real(exp(mapY_->v(n+1))) : 1.0;
const Real alpha = -2*rho_/mixedSigma_*lowerBoundaryFactor*logFacLow;
const Real beta = -2*rho_/mixedSigma_*upperBoundaryFactor*logFacUpp;
ModTripleBandLinearOp fDx(FirstDerivativeOp(0, mesher));
for (const auto& iter : *mesher->layout()) {
if (iter.coordinates()[1] == 0) {
const Size idx = iter.index();
if (!leverageFct_) {
dxxMap_->upper(idx) += alpha*fDx.upper(idx);
dxxMap_->diag(idx) += alpha*fDx.diag(idx);
dxxMap_->lower(idx) += alpha*fDx.lower(idx);
}
boundary_->upper(idx)= alpha*fDx.upper(idx);
boundary_->diag(idx) = alpha*fDx.diag(idx);
boundary_->lower(idx) = alpha*fDx.lower(idx);
}
else if (iter.coordinates()[1] == n-1) {
const Size idx = iter.index();
if (!leverageFct_) {
dxxMap_->upper(idx)+= beta*fDx.upper(idx);
dxxMap_->diag(idx) += beta*fDx.diag(idx);
dxxMap_->lower(idx) += beta*fDx.lower(idx);
}
boundary_->upper(idx)= beta*fDx.upper(idx);
boundary_->diag(idx) = beta*fDx.diag(idx);
boundary_->lower(idx) = beta*fDx.lower(idx);
}
}
}
Size FdmHestonFwdOp::size() const {
return 2;
}
void FdmHestonFwdOp::setTime(Time t1, Time t2){
const Rate r = rTS_->forwardRate(t1, t2, Continuous).rate();
const Rate q = qTS_->forwardRate(t1, t2, Continuous).rate();
if (leverageFct_ != nullptr) {
L_ = getLeverageFctSlice(t1, t2);
Array Lsquare = L_*L_;
if (type_ == FdmSquareRootFwdOp::Plain) {
mapX_->axpyb( Array(1, -r + q), *dxMap_,
dxxMap_->multR(Lsquare).add(boundary_->multR(L_))
.add(dxMap_->multR(rho_*mixedSigma_*L_))
.add(dxMap_->mult(varianceValues_).multR(Lsquare)),
Array());
} else if (type_ == FdmSquareRootFwdOp::Power) {
mapX_->axpyb( Array(1, -r + q), *dxMap_,
dxxMap_->multR(Lsquare).add(boundary_->multR(L_))
.add(dxMap_->multR(rho_*2.0*kappa_*theta_/(mixedSigma_)*L_))
.add(dxMap_->mult(varianceValues_).multR(Lsquare)), Array());
} else if (type_ == FdmSquareRootFwdOp::Log) {
mapX_->axpyb( Array(1, -r + q), *dxMap_,
dxxMap_->multR(Lsquare).add(boundary_->multR(L_))
.add(dxMap_->mult(0.5*Exp(2.0*varianceValues_)).multR(Lsquare)),
Array());
}
} else {
if (type_ == FdmSquareRootFwdOp::Plain) {
mapX_->axpyb( - r + q + rho_*mixedSigma_ + varianceValues_, *dxMap_,
*dxxMap_, Array());
} else if (type_ == FdmSquareRootFwdOp::Power) {
mapX_->axpyb( - r + q + rho_*2.0*kappa_*theta_/(mixedSigma_) + varianceValues_,
*dxMap_, *dxxMap_, Array());
} else if (type_ == FdmSquareRootFwdOp::Log) {
mapX_->axpyb( - r + q + 0.5*Exp(2.0*varianceValues_), *dxMap_,
*dxxMap_, Array());
}
}
}
Array FdmHestonFwdOp::apply(const Array& u) const {
if (leverageFct_ != nullptr) {
return mapX_->apply(u)
+ mapY_->apply(u)
+ correlation_->apply(L_*u);
} else {
return mapX_->apply(u)
+ mapY_->apply(u)
+ correlation_->apply(u);
}
}
Array FdmHestonFwdOp::apply_mixed(const Array& u) const{
if (leverageFct_ != nullptr) {
return correlation_->apply(L_*u);
} else {
return correlation_->apply(u);
}
}
Array FdmHestonFwdOp::apply_direction(
Size direction, const Array& u) const {
if (direction == 0)
return mapX_->apply(u) ;
else if (direction == 1)
return mapY_->apply(u) ;
else
QL_FAIL("direction too large");
}
Array FdmHestonFwdOp::solve_splitting(
Size direction, const Array& u, Real s) const{
if (direction == 0) {
return mapX_->solve_splitting(u, s, 1.0);
}
else if (direction == 1) {
return mapY_->solve_splitting(1, u, s);
}
else
QL_FAIL("direction too large");
}
Array FdmHestonFwdOp::preconditioner(
const Array& u, Real dt) const{
return solve_splitting(1, u, dt);
}
Array FdmHestonFwdOp::getLeverageFctSlice(Time t1, Time t2) const {
Array v(mesher_->layout()->size(), 1.0);
if (!leverageFct_)
return v;
const Real t = 0.5*(t1+t2);
const Time time = std::min(leverageFct_->maxTime(), t);
//std::max(leverageFct_->minTime(), t));
for (const auto& iter : *mesher_->layout()) {
const Size nx = iter.coordinates()[0];
if (iter.coordinates()[1] == 0) {
const Real x = std::exp(mesher_->location(iter, 0));
const Real spot = std::min(leverageFct_->maxStrike(),
std::max(leverageFct_->minStrike(), x));
v[nx] = std::max(0.01, leverageFct_->localVol(time, spot, true));
}
else {
v[iter.index()] = v[nx];
}
}
return v;
}
std::vector<SparseMatrix> FdmHestonFwdOp::toMatrixDecomp() const {
std::vector<SparseMatrix> retVal(3);
retVal[0] = mapX_->toMatrix();
retVal[1] = mapY_->toMatrix();
retVal[2] = correlation_->toMatrix();
return retVal;
}
}
|