File: fdmhestonhullwhiteop.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (153 lines) | stat: -rw-r--r-- 6,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008 Andreas Gaida
 Copyright (C) 2008 Ralph Schreyer
 Copyright (C) 2008, 2011 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmhestonhullwhiteop.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/operators/secondderivativeop.hpp>
#include <ql/methods/finitedifferences/operators/secondordermixedderivativeop.hpp>
#include <ql/models/shortrate/onefactormodels/hullwhite.hpp>
#include <utility>

namespace QuantLib {

    FdmHestonHullWhiteEquityPart::FdmHestonHullWhiteEquityPart(
        const ext::shared_ptr<FdmMesher>& mesher,
        ext::shared_ptr<HullWhite> hwModel,
        ext::shared_ptr<YieldTermStructure> qTS)
    : x_(mesher->locations(2)), varianceValues_(0.5 * mesher->locations(1)),
      dxMap_(FirstDerivativeOp(0, mesher)),
      dxxMap_(SecondDerivativeOp(0, mesher).mult(0.5 * mesher->locations(1))), mapT_(0, mesher),
      hwModel_(std::move(hwModel)), mesher_(mesher), qTS_(std::move(qTS)) {

        // on the boundary s_min and s_max the second derivative
        // d²V/dS² is zero and due to Ito's Lemma the variance term
        // in the drift should vanish.
        for (const auto& iter : *mesher_->layout()) {
            if (   iter.coordinates()[0] == 0
                || iter.coordinates()[0] == mesher_->layout()->dim()[0]-1) {
                varianceValues_[iter.index()] = 0.0;
            }
        }
        volatilityValues_ = Sqrt(2*varianceValues_);
    }

    void FdmHestonHullWhiteEquityPart::setTime(Time t1, Time t2) {
        const ext::shared_ptr<OneFactorModel::ShortRateDynamics> dynamics =
            hwModel_->dynamics();

        const Real phi = 0.5*(  dynamics->shortRate(t1, 0.0)
                              + dynamics->shortRate(t2, 0.0));

        const Rate q = qTS_->forwardRate(t1, t2, Continuous).rate();

        mapT_.axpyb(x_+phi-varianceValues_-q, dxMap_, dxxMap_, Array());
    }

    const TripleBandLinearOp& FdmHestonHullWhiteEquityPart::getMap() const {
        return mapT_;
    }

    FdmHestonHullWhiteOp::FdmHestonHullWhiteOp(const ext::shared_ptr<FdmMesher>& mesher,
                                               const ext::shared_ptr<HestonProcess>& hestonProcess,
                                               const ext::shared_ptr<HullWhiteProcess>& hwProcess,
                                               Real equityShortRateCorrelation)
    : v0_(hestonProcess->v0()), kappa_(hestonProcess->kappa()), theta_(hestonProcess->theta()),
      sigma_(hestonProcess->sigma()), rho_(hestonProcess->rho()),
      hwModel_(ext::make_shared<HullWhite>(
          hestonProcess->riskFreeRate(), hwProcess->a(), hwProcess->sigma())),
      hestonCorrMap_(
          SecondOrderMixedDerivativeOp(0, 1, mesher).mult(rho_ * sigma_ * mesher->locations(1))),
      equityIrCorrMap_(
          SecondOrderMixedDerivativeOp(0, 2, mesher)
              .mult(Sqrt(mesher->locations(1)) * hwProcess->sigma() * equityShortRateCorrelation)),
      dyMap_(SecondDerivativeOp(1U, mesher)
                 .mult(0.5 * sigma_ * sigma_ * mesher->locations(1))
                 .add(FirstDerivativeOp(1, mesher).mult(kappa_ * (theta_ - mesher->locations(1))))),
      dxMap_(mesher, hwModel_, hestonProcess->dividendYield().currentLink()),
      hullWhiteOp_(mesher, hwModel_, 2) {

        QL_REQUIRE(  equityShortRateCorrelation*equityShortRateCorrelation
                   + hestonProcess->rho()*hestonProcess->rho() <= 1.0,
                   "correlation matrix has negative eigenvalues");
    }

    void FdmHestonHullWhiteOp::setTime(Time t1, Time t2) {
        dxMap_.setTime(t1, t2);
        hullWhiteOp_.setTime(t1, t2);
    }

    Size FdmHestonHullWhiteOp::size() const {
        return 3;
    }

    Array FdmHestonHullWhiteOp::apply(const Array& u) const {
        return  dyMap_.apply(u) + dxMap_.getMap().apply(u)
              + hullWhiteOp_.apply(u)
              + hestonCorrMap_.apply(u) + equityIrCorrMap_.apply(u);
    }

    Array FdmHestonHullWhiteOp::apply_direction(Size direction,
                                                const Array& r) const {
        if (direction == 0)
            return dxMap_.getMap().apply(r);
        else if (direction == 1)
            return dyMap_.apply(r);
        else if (direction == 2)
            return hullWhiteOp_.apply(r);
        else
            QL_FAIL("direction too large");
    }

    Array FdmHestonHullWhiteOp::apply_mixed(const Array& r) const {
        return hestonCorrMap_.apply(r) + equityIrCorrMap_.apply(r);
    }

    Array FdmHestonHullWhiteOp::solve_splitting(Size direction, const Array& r,
                                                Real a) const {
        if (direction == 0) {
            return dxMap_.getMap().solve_splitting(r, a, 1.0);
        }
        else if (direction == 1) {
            return dyMap_.solve_splitting(r, a, 1.0);
        }
        else if (direction == 2) {
            return hullWhiteOp_.solve_splitting(2, r, a);
        }
        else
            QL_FAIL("direction too large");
    }
    
    Array FdmHestonHullWhiteOp::preconditioner(const Array& r, 
                                               Real dt) const {
        return solve_splitting(0, r, dt);
    }

    std::vector<SparseMatrix> FdmHestonHullWhiteOp::toMatrixDecomp() const {
        return {
            dxMap_.getMap().toMatrix(),
            dyMap_.toMatrix(),
            hullWhiteOp_.toMatrixDecomp().front(),
            hestonCorrMap_.toMatrix() + equityIrCorrMap_.toMatrix()
        };
    }

}