File: fdm3dimsolver.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (125 lines) | stat: -rw-r--r-- 5,544 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2011 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/interpolations/bicubicsplineinterpolation.hpp>
#include <ql/math/interpolations/cubicinterpolation.hpp>
#include <ql/methods/finitedifferences/finitedifferencemodel.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/solvers/fdm3dimsolver.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmsnapshotcondition.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <utility>

namespace QuantLib {

    Fdm3DimSolver::Fdm3DimSolver(const FdmSolverDesc& solverDesc,
                                 const FdmSchemeDesc& schemeDesc,
                                 ext::shared_ptr<FdmLinearOpComposite> op)
    : solverDesc_(solverDesc), schemeDesc_(schemeDesc), op_(std::move(op)),
      thetaCondition_(ext::make_shared<FdmSnapshotCondition>(
          0.99 * std::min(1.0 / 365.0,
                          solverDesc.condition->stoppingTimes().empty() ?
                              solverDesc.maturity :
                              solverDesc.condition->stoppingTimes().front()))),
      conditions_(FdmStepConditionComposite::joinConditions(thetaCondition_, solverDesc.condition)),
      initialValues_(solverDesc.mesher->layout()->size()),
      resultValues_(
          solverDesc.mesher->layout()->dim()[2],
          Matrix(solverDesc.mesher->layout()->dim()[1], solverDesc.mesher->layout()->dim()[0])),
      interpolation_(solverDesc.mesher->layout()->dim()[2]) {

        x_.reserve(solverDesc.mesher->layout()->dim()[0]);
        y_.reserve(solverDesc.mesher->layout()->dim()[1]);
        z_.reserve(solverDesc.mesher->layout()->dim()[2]);

        for (const auto& iter : *solverDesc.mesher->layout()) {
            initialValues_[iter.index()]
               = solverDesc.calculator->avgInnerValue(iter,
                                                      solverDesc.maturity);


            if ((iter.coordinates()[1] == 0U) && (iter.coordinates()[2] == 0U)) {
                x_.push_back(solverDesc.mesher->location(iter, 0));
            }
            if ((iter.coordinates()[0] == 0U) && (iter.coordinates()[2] == 0U)) {
                y_.push_back(solverDesc.mesher->location(iter, 1));
            }
            if ((iter.coordinates()[0] == 0U) && (iter.coordinates()[1] == 0U)) {
                z_.push_back(solverDesc.mesher->location(iter, 2));
            }
        }
    }

    void Fdm3DimSolver::performCalculations() const {
        Array rhs(initialValues_.size());
        std::copy(initialValues_.begin(), initialValues_.end(), rhs.begin());

        FdmBackwardSolver(op_, solverDesc_.bcSet, conditions_, schemeDesc_)
             .rollback(rhs, solverDesc_.maturity, 0.0,
                       solverDesc_.timeSteps, solverDesc_.dampingSteps);

        for (Size i=0; i < z_.size(); ++i) {
            std::copy(rhs.begin()+i    *y_.size()*x_.size(),
                      rhs.begin()+(i+1)*y_.size()*x_.size(),
                      resultValues_[i].begin());

            interpolation_[i] = ext::make_shared<BicubicSpline>(x_.begin(), x_.end(),
                                  y_.begin(), y_.end(),
                                  resultValues_[i]);
        }
    }

    Real Fdm3DimSolver::interpolateAt(Real x, Real y, Rate z) const {
        calculate();

        Array zArray(z_.size());
        for (Size i=0; i < z_.size(); ++i) {
            zArray[i] = (*interpolation_[i])(x, y);
        }
        return MonotonicCubicNaturalSpline(z_.begin(), z_.end(),
                                           zArray.begin())(z);
    }

    Real Fdm3DimSolver::thetaAt(Real x, Real y, Rate z) const {
        if (conditions_->stoppingTimes().front() == 0.0)
            return Null<Real>();

        calculate();

        const Array& rhs = thetaCondition_->getValues();
        std::vector<Matrix> thetaValues(z_.size(), Matrix(y_.size(),x_.size()));
        for (Size i=0; i < z_.size(); ++i) {
            std::copy(rhs.begin()+i    *y_.size()*x_.size(),
                      rhs.begin()+(i+1)*y_.size()*x_.size(),
                      thetaValues[i].begin());
        }

        Array zArray(z_.size());
        for (Size i=0; i < z_.size(); ++i) {
            zArray[i] = BicubicSpline(x_.begin(),x_.end(),
                                      y_.begin(),y_.end(), thetaValues[i])(x,y);
        }

        return (MonotonicCubicNaturalSpline(z_.begin(), z_.end(),
                                            zArray.begin())(z)
                - interpolateAt(x, y, z)) / thetaCondition_->getTime();
    }
}