1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2011 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file fdmndimsolver.hpp
*/
#ifndef quantlib_fdm_n_dim_solver_hpp
#define quantlib_fdm_n_dim_solver_hpp
#include <ql/patterns/lazyobject.hpp>
#include <ql/math/interpolations/multicubicspline.hpp>
#include <ql/methods/finitedifferences/finitedifferencemodel.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmesher.hpp>
#include <ql/methods/finitedifferences/solvers/fdmsolverdesc.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/solvers/fdmbackwardsolver.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmsnapshotcondition.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <numeric>
namespace QuantLib {
template <Size N>
class FdmNdimSolver : public LazyObject {
public:
FdmNdimSolver(const FdmSolverDesc& solverDesc,
const FdmSchemeDesc& schemeDesc,
ext::shared_ptr<FdmLinearOpComposite> op);
void performCalculations() const override;
Real interpolateAt(const std::vector<Real>& x) const;
Real thetaAt(const std::vector<Real>& x) const;
// template meta programming
typedef typename MultiCubicSpline<N>::data_table data_table;
void static setValue(data_table& f,
const std::vector<Size>& x, Real value);
private:
const FdmSolverDesc solverDesc_;
const FdmSchemeDesc schemeDesc_;
const ext::shared_ptr<FdmLinearOpComposite> op_;
const ext::shared_ptr<FdmSnapshotCondition> thetaCondition_;
const ext::shared_ptr<FdmStepConditionComposite> conditions_;
std::vector<std::vector<Real> > x_;
std::vector<Real> initialValues_;
const std::vector<bool> extrapolation_;
mutable ext::shared_ptr<data_table> f_;
mutable ext::shared_ptr<MultiCubicSpline<N> > interp_;
};
template <Size N>
inline FdmNdimSolver<N>::FdmNdimSolver(const FdmSolverDesc& solverDesc,
const FdmSchemeDesc& schemeDesc,
ext::shared_ptr<FdmLinearOpComposite> op)
: solverDesc_(solverDesc), schemeDesc_(schemeDesc), op_(std::move(op)),
thetaCondition_(new FdmSnapshotCondition(
0.99 * std::min(1.0 / 365.0,
solverDesc.condition->stoppingTimes().empty() ?
solverDesc.maturity :
solverDesc.condition->stoppingTimes().front()))),
conditions_(FdmStepConditionComposite::joinConditions(thetaCondition_, solverDesc.condition)),
x_(solverDesc.mesher->layout()->dim().size()),
initialValues_(solverDesc.mesher->layout()->size()),
extrapolation_(std::vector<bool>(N, false)) {
QL_REQUIRE(solverDesc.mesher->layout()->dim().size() == N, "solver dim " << N
<< "does not fit to layout dim " << solverDesc.mesher->layout()->size());
for (Size i=0; i < N; ++i) {
x_[i].reserve(solverDesc.mesher->layout()->dim()[i]);
}
for (const auto& iter : *solverDesc.mesher->layout()) {
initialValues_[iter.index()] = solverDesc_.calculator
->avgInnerValue(iter, solverDesc.maturity);
const std::vector<Size>& c = iter.coordinates();
for (Size i=0; i < N; ++i) {
if ((std::accumulate(c.begin(), c.end(), 0UL) - c[i]) == 0U) {
x_[i].push_back(solverDesc.mesher->location(iter, i));
}
}
}
f_ = ext::shared_ptr<data_table>(new data_table(x_));
}
template <Size N> inline
void FdmNdimSolver<N>::performCalculations() const {
Array rhs(initialValues_.size());
std::copy(initialValues_.begin(), initialValues_.end(), rhs.begin());
FdmBackwardSolver(op_, solverDesc_.bcSet, conditions_, schemeDesc_)
.rollback(rhs, solverDesc_.maturity, 0.0,
solverDesc_.timeSteps, solverDesc_.dampingSteps);
for (const auto& iter : *solverDesc_.mesher->layout()) {
setValue(*f_, iter.coordinates(), rhs[iter.index()]);
}
interp_ = ext::shared_ptr<MultiCubicSpline<N> >(
new MultiCubicSpline<N>(x_, *f_, extrapolation_));
}
template <Size N> inline
Real FdmNdimSolver<N>::thetaAt(const std::vector<Real>& x) const {
if (conditions_->stoppingTimes().front() == 0.0)
return Null<Real>();
calculate();
const Array& rhs = thetaCondition_->getValues();
data_table f(x_);
for (const auto& iter : *solverDesc_.mesher->layout()) {
setValue(f, iter.coordinates(), rhs[iter.index()]);
}
return (MultiCubicSpline<N>(x_, f)(x)
- interpolateAt(x)) / thetaCondition_->getTime();
}
template <Size N> inline
Real FdmNdimSolver<N>::interpolateAt(const std::vector<Real>& x) const {
calculate();
return (*interp_)(x);
}
template <Size N> inline
void FdmNdimSolver<N>::setValue(data_table& f,
const std::vector<Size>& x, Real value) {
FdmNdimSolver<N-1>::setValue(f[x[x.size()-N]], x, value);
}
template <> inline
void FdmNdimSolver<1>::setValue(data_table& f,
const std::vector<Size>& x, Real value) {
f[x.back()] = value;
}
}
#endif
|