File: cevrndcalculator.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (131 lines) | stat: -rw-r--r-- 4,375 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2018 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file cevrndcalculator.cpp */

#include <ql/errors.hpp>
#include <ql/math/functional.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/methods/finitedifferences/utilities/cevrndcalculator.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/distributions/non_central_chi_squared.hpp>

namespace QuantLib {

    CEVRNDCalculator::CEVRNDCalculator(Real f0, Real alpha, Real beta)
    : f0_(f0),
      alpha_(alpha),
      beta_(beta),
      delta_((1.0-2.0*beta)/(1.0-beta)),
      x0_(X(f0)) {
        QL_REQUIRE(beta != 1.0, "beta can not be one");
    }

    Real CEVRNDCalculator::massAtZero(Time t) const {
        if (delta_ < 2.0)
            return 1.0-boost::math::gamma_p(-0.5*delta_+1.0,x0_/(2.0*t));
        else
            return 0.0;
    }

    Real CEVRNDCalculator::X(Real f) const {
        return std::pow(f, 2.0*(1.0-beta_))/squared(alpha_*(1.0-beta_));
    }

    Real CEVRNDCalculator::invX(Real x) const {
        return std::pow(x*squared(alpha_*(1.0-beta_)),
                        1.0/(2.0*(1.0-beta_)));
    }

    Real CEVRNDCalculator::pdf(Real f, Time t) const {
        const Real y = X(f);

        if (delta_ < 2.0) {
            return boost::math::pdf(
                boost::math::non_central_chi_squared_distribution<Real>(
                    4.0-delta_, y/t), x0_/t)/t * 2.0*(1.0-beta_)*y/f;
        }
        else {
            return boost::math::pdf(
                boost::math::non_central_chi_squared_distribution<Real>(
                    delta_, x0_/t), y/t)/t * 2.0*(beta_-1.0)*y/f;
        }
    }

    Real CEVRNDCalculator::cdf(Real f, Time t) const {
        const Real y = X(f);

        if (delta_ < 2.0)
            return 1.0 - boost::math::cdf(
                boost::math::non_central_chi_squared_distribution<Real>(
                    2.0-delta_, y/t), x0_/t);
        else
            return 1.0 - boost::math::cdf(
                boost::math::non_central_chi_squared_distribution<Real>(
                    delta_, x0_/t), y/t);
    }

    Real CEVRNDCalculator::sankaranApprox(Real c, Time t, Real x) const {
        const Real a = x0_/t;
        const Real b = 2.0 - delta_;

        c = std::max(c, -0.45*b);

        const Real h = 1 - 2*(b+c)*(b+3*c)/(3*squared(b+2*c));
        const Real p = (b+2*c)/squared(b+c);
        const Real m = (h-1)*(1-3*h);

        const Real u = (std::pow(a/(b+c), h) - (1 + h*p*(h-1-0.5*(2-h)*m*p)))/
                (h*std::sqrt(2*p)*(1+0.5*m*p));

        return u - x;
    }

    Real CEVRNDCalculator::invcdf(Real q, Time t) const {
        if (delta_ < 2.0) {
            if (f0_ < QL_EPSILON || q < massAtZero(t))
                return 0.0;

            const Real x = InverseCumulativeNormal()(1-q);

            auto cdfApprox = [&](Real _c){ return sankaranApprox(_c, t, x); };

            const Real y0 = X(f0_)/t;

            try {
                Brent brent;
                brent.setMaxEvaluations(20);
                const Real guess =
                    invX(brent.solve(cdfApprox, 1e-8, y0, 0.02*y0) * t);

                return InvCDFHelper(this, guess, 1e-8, 100).inverseCDF(q, t);
            }
            catch (...) {
                return InvCDFHelper(this, f0_, 1e-8, 100).inverseCDF(q, t);
            }
        }
        else {
            const Real x = t * boost::math::quantile(
                boost::math::non_central_chi_squared_distribution<Real>(
                    delta_, x0_/t), 1-q);
            return invX(x);
        }
    }
}